

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
Welcome to Fermipy’s documentation!


Introduction

This is the Fermipy documentation page.  Fermipy is a python package
that facilitates analysis of data from the Large Area Telescope (LAT)
with the Fermi Science Tools [http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/].  For
more information about the Fermi mission and the LAT instrument please
refer to the Fermi Science Support Center [http://fermi.gsfc.nasa.gov/ssc/].

The Fermipy package is built on the pyLikelihood interface of the
Fermi Science Tools and provides a set of high-level tools for
performing common analysis tasks:


	Data and model preparation with the gt-tools (gtselect, gtmktime,
etc.).

	Extracting a spectral energy distribution (SED) of a source.

	Generating TS and residual maps for a region of interest.

	Finding new source candidates.

	Localizing a source or fitting its spatial extension.



Fermipy uses a configuration-file driven workflow in which the
analysis parameters (data selection, IRFs, and ROI model) are defined
in a YAML configuration file.  Analysis is executed through a python
script that calls the methods of GTAnalysis to
perform different analysis operations.

For instructions on installing Fermipy see the Installation page.
For a short introduction to using Fermipy see the Quickstart Guide.


Getting Help

If you have questions about using Fermipy please open a GitHub Issue [https://github.com/fermiPy/fermipy/issues] or email the Fermipy
developers.




Documentation Contents



	Installation
	Installing the Fermi Science Tools

	Installing with pip

	Installing with Anaconda Python

	Installing with Docker

	Running at SLAC

	Upgrading

	Building from Source

	Issues





	Quickstart Guide
	Creating a Configuration File

	Creating an Analysis Script

	Extracting Analysis Results

	Reloading from a Previous State

	IPython Notebook Tutorials





	Configuration
	Class Configuration

	Configuration File
	binning

	components

	data

	extension

	fileio

	gtlike

	lightcurve

	model

	optimizer

	plotting

	residmap

	roiopt

	sed

	selection

	sourcefind

	tsmap

	tscube









	Output File
	ROI Dictionary

	Source Dictionary





	ROI Optimization and Fitting
	Fitting
	Reference/API





	ROI Optimization
	Reference/API









	Customizing the Model
	Configuring Diffuse Components

	Configuring Source Components

	Spatial Models

	Editing the Model at Runtime





	Advanced Analysis Methods
	SED Analysis
	Examples

	SED FITS File

	SED Dictionary

	Configuration

	Reference/API





	Light Curves
	Examples

	Reference/API





	Extension Fitting
	Configuration

	Reference/API





	TS Map
	Examples

	Configuration

	Reference/API





	TS Cube
	Examples

	Configuration

	Reference/API





	Residual Map
	Examples

	Configuration

	Reference/API





	Source Finding
	Examples

	Reference/API





	Source Localization
	Reference/API





	Phased Analysis

	Sensitivity Tools





	fermipy package
	Submodules

	fermipy.config module

	fermipy.defaults module

	fermipy.gtanalysis module

	fermipy.logger module

	fermipy.roi_model module

	fermipy.utils module

	fermipy.plotting module

	fermipy.sed module

	fermipy.sourcefind module

	fermipy.spectrum module

	fermipy.skymap module

	fermipy.castro module

	fermipy.tsmap module

	fermipy.residmap module

	fermipy.lightcurve module

	Module contents





	Changelog
	0.13.0 (01/16/2017)

	0.12.0 (11/20/2016)

	0.11.0 (08/24/2016)

	0.10.0 (07/03/2016)

	0.9.0 (05/25/2016)

	0.8.0 (05/18/2016)
















Indices and tables





          

      

      

    


    
         Copyright 2016, Fermipy Developers.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
Installation


Note

Fermipy is only compatible with Science Tools v10r0p5 or later.  If
you are using an earlier version, you will need to download and
install the latest version from the FSSC [http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/].  Note
that it is recommended to use the non-ROOT binary distributions
of the Science Tools.



These instructions assume that you already have a local installation
of the Fermi Science Tools (STs).  For more information about
installing and setting up the STs see Installing the Fermi Science Tools.  If you are
running at SLAC you can follow the Running at SLAC instructions.
For Unix/Linux users we currently recommend following the
Installing with Anaconda Python instructions.  For OSX users we recommend
following the Installing with pip instructions.  The
Installing with Docker instructions can be used to install the STs on
both OSX and Linux machines that are new enough to support Docker.


Installing the Fermi Science Tools

The Fermi STs are a prerequisite for fermipy.  To install the STs we
recommend using one of the non-ROOT binary distributions available
from the FSSC [http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/].  The
following example illustrates how to install the binary distribution
on a Linux machine running Ubuntu Trusty:

$ curl -OL http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/tar/ScienceTools-v10r0p5-fssc-20150518-x86_64-unknown-linux-gnu-libc2.19-10-without-rootA.tar.gz
$ tar xzf ScienceTools-v10r0p5-fssc-20150518-x86_64-unknown-linux-gnu-libc2.19-10-without-rootA.tar.gz
$ export FERMI_DIR=ScienceTools-v10r0p5-fssc-20150518-x86_64-unknown-linux-gnu-libc2.19-10-without-rootA/x86_64-unknown-linux-gnu-libc2.19-10
$ source $FERMI_DIR/fermi-init.sh





More information about installing the STs as well as the complete list
of the available binary distributions is available on the FSSC
software page [http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/].




Installing with pip

These instructions cover installation with the pip package
management tool.  This method will install fermipy and its
dependencies into the python distribution that comes with the Fermi
Science Tools.  First verify that you’re running the python from the
Science Tools

$ which python





If this doesn’t point to the python in your Science Tools install
(i.e. it returns /usr/bin/python or /usr/local/bin/python) then the
Science Tools are not properly setup.

Before starting the installation process, you will need to determine
whether you have setuptools and pip installed in your local python
environment.  You may need to install these packages if you are
running with the binary version of the Fermi Science Tools distributed
by the FSSC.  The following command will install both packages in your
local environment:

$ curl https://bootstrap.pypa.io/get-pip.py | python -





Check if pip is correctly installed:

$ which pip





Once again, if this isn’t the pip in the Science Tools, something went
wrong.  Now install fermipy by running

$ pip install fermipy





To run the ipython notebook examples you will also need to install
jupyter notebook:

$ pip install jupyter





Finally, check that fermipy imports:

$ python
Python 2.7.8 (default, Aug 20 2015, 11:36:15)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from fermipy.gtanalysis import GTAnalysis
>>> help(GTAnalysis)








Installing with Anaconda Python


Note

The following instructions have only been verified to work with
binary Linux distributions of the Fermi STs.  If you are using OSX
or you have installed the STs from source you should follow the
Installing with pip thread above.



These instructions cover how to use fermipy with a new or existing
anaconda python installation.  These instructions assume that you have
already downloaded and installed the Fermi STs from the FSSC and you
have set the FERMI_DIR environment variable to point to the location
of this installation.

If you already have an existing anaconda python installation then fermipy
can be installed from the conda-forge channel as follows:

$ conda config --append channels conda-forge
$ conda install fermipy





If you do not have an anaconda installation, the condainstall.sh
script can be used to create a minimal anaconda installation from
scratch.  First download and source the condainstall.sh script
from the fermipy repository:

$ curl -OL https://raw.githubusercontent.com/fermiPy/fermipy/master/condainstall.sh
$ source condainstall.sh





If you do not already have anaconda python installed on your system
this script will create a new installation under $HOME/miniconda.
If you already have anaconda installed and the conda command is in
your path the script will use your existing installation.  After
running condainstall.sh fermipy can be installed with conda:

$ conda install fermipy





Alternatively fermipy can be installed from source following the
instructions in Building from Source.

Once fermipy is installed you can initialize the ST/fermipy
environment by running condasetup.sh:

$ curl -OL https://raw.githubusercontent.com/fermiPy/fermipy/master/condasetup.sh
$ source condasetup.sh





If you installed fermipy in a specific conda environment you should
switch to this environment before running the script:

$ source activate fermi-env
$ source condasetup.sh








Installing with Docker


Note

This method for installing the STs is currently experimental
and has not been fully tested on all operating systems.  If you
encounter issues please try either the pip- or anaconda-based
installation instructions.



Docker is a virtualization tool that can be used to deploy software in
portable containers that can be run on any operating system that
supports Docker.  Before following these instruction you should first
install docker on your machine following the installation instructions [https://docs.docker.com/engine/installation/] for your operating
system.  Docker is currently supported on the following operating
systems:


	macOS 10.10.3 Yosemite or later

	Ubuntu Precise 12.04 or later

	Debian 8.0 or later

	RHEL7 or later

	Windows 10 or later



Note that Docker is not supported by RHEL6 or its variants (CentOS6,
Scientific Linux 6).

These instructions describe how to create a docker-based ST
installation that comes preinstalled with anaconda python and fermipy.
The installation is fully contained in a docker image that is roughly
2GB in size.  To see a list of the available images go to the fermipy
Docker Hub page [https://hub.docker.com/r/fermipy/fermipy/tags/].
Images are tagged with the release version of the STs that was used to
build the image (e.g. 11-05-00).  The latest tag points to the image
corresponding to the most recent ST release.

To install the latest image first download the image file:

$ docker pull fermipy/fermipy
$ docker tag fermipy/fermipy fermipy





This will create an image called fermipy.  Now change to the
directory where you plan to do your analysis and run the following
command to launch a docker container instance:

$ docker run -it --rm -p 8888:8888 -v $PWD:/workdir -w /workdir fermipy





This will start an ipython notebook server that will be attached to
port 8888.  Once the server is running you can start a notebook
session by navigating to the URL http://localhost:8888/.  The -v $PWD:/workdir argument mounts
the current directory to the working area of the container.
Additional directories may be mounted by adding more volume arguments
-v with host and container paths separated by a colon.

The same docker image may be used to launch python, ipython, or a bash
shell by passing the command as an argument to docker run:

$ docker run -it --rm -v $PWD:/workdir -w /workdir fermipy ipython
$ docker run -it --rm -v $PWD:/workdir -w /workdir fermipy python
$ docker run -it --rm -v $PWD:/workdir -w /workdir fermipy /bin/bash





By default interactive graphics will not be enabled.  The following
code can be inserted at the top of your analysis script to fall-back to a
non-interactive backend:

from fermipy.utils import init_matplotlib_backend
init_matplotlib_backend()





The following commands can be used to enable X11 forwarding for
interactive graphics on an OSX machine.  This requires you to have
installed XQuartz 2.7.10 or later.  First enable remote connections by
default and start the X server:

$ defaults write org.macosforge.xquartz.X11 nolisten_tcp -boolean false
$ open -a XQuartz





Now check that the X server is running and listening on port 6000:

$ lsof -i :6000





If you don’t see X11 listening on port 6000 then try restarting XQuartz.

Once you have XQuartz configured you can enable forwarding by setting
DISPLAY environment variable to the IP address of the host machine:

$ export HOST_IP=`ifconfig en0 | grep "inet " | cut -d " " -f2`
$ xhost +local:
$ docker run -it --rm -e DISPLAY=$HOST_IP:0 -v $PWD:/workdir -w /workdir fermipy ipython








Running at SLAC

This section provides specific installation instructions for running
in the SLAC computing environment.  First download and source the
slacsetup.sh script:

$ wget https://raw.githubusercontent.com/fermiPy/fermipy/master/slacsetup.sh -O slacsetup.sh
$ source slacsetup.sh





To initialize the ST environment run the slacsetup function:

$ slacsetup





This will setup your GLAST_EXT path and source the setup script
for one of the pre-built ST installations (the current default is
11-05-00).  To manually override the ST version you can provide the
release tag as an argument to slacsetup:

$ slacsetup XX-XX-XX





Because users don’t have write access to the ST python installation
all pip commands that install or uninstall packages must be executed
with the --user flag.  After initializing the STs environment,
install fermipy with pip:

$ pip install fermipy --user





This will install fermipy in $HOME/.local.  You can verify that
the installation has succeeded by importing
GTAnalysis:

$ python
Python 2.7.8 |Anaconda 2.1.0 (64-bit)| (default, Aug 21 2014, 18:22:21)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://binstar.org
>>> from fermipy.gtanalysis import GTAnalysis








Upgrading

By default installing fermipy with pip or conda will get the latest tagged
released available on the PyPi [https://pypi.python.org/pypi]
package respository.  You can check your currently installed version
of fermipy with pip show:

$ pip show fermipy





or conda info:

$ conda info fermipy





To upgrade your fermipy installation to the latest version run the pip
installation command with --upgrade --no-deps (remember to also
include the --user option if you’re running at SLAC):

$ pip install fermipy --upgrade --no-deps
Collecting fermipy
Installing collected packages: fermipy
  Found existing installation: fermipy 0.6.6
    Uninstalling fermipy-0.6.6:
      Successfully uninstalled fermipy-0.6.6
Successfully installed fermipy-0.6.7





If you installed fermipy with conda the equivalent command is:

$ conda update fermipy








Building from Source

These instructions describe how to install fermipy from its git source
code repository using the setup.py script.  Installing from source
can be useful if you want to make your own modifications to the
fermipy source code or test features in an untagged commit.  Note that
non-expert users are recommended to install a tagged release of
fermipy following the Installing with pip or Installing with Anaconda Python
instructions above.

First clone the fermipy git repository and cd to the root directory of
the repository:

$ git clone https://github.com/fermiPy/fermipy.git
$ cd fermipy





To install the latest commit in the master branch run setup.py
install from the root directory:

# Install the latest commit
$ git checkout master
$ python setup.py install --user





A useful option if you are doing active code development is to install
your working copy of the package.  This will create an installation in
your python distribution that is linked to the copy of the code in
your local repository.  This allows you to run with any local
modifications without having to reinstall the package each time you
make a change.  To install your working copy of fermipy run with the
develop argument:

# Install a link to your source code installation
$ python setup.py develop --user





You can later remove the link to your working copy by running the same
command with the --uninstall flag:

# Install a link to your source code installation
$ python setup.py develop --user --uninstall





You also have the option of installing a previous release tag.  To see
the list of release tags run git tag.  To install a specific
release tag, run git checkout with the tag name followed by
setup.py install:

# Checkout a specific release tag
$ git checkout X.X.X
$ python setup.py install --user








Issues

If you get an error about importing matplotlib (specifically something
about the macosx backend) you might change your default backend to get
it working.  The customizing matplotlib page [http://matplotlib.org/users/customizing.html] details the
instructions to modify your default matplotlibrc file (you can pick
GTK or WX as an alternative).  Specifically the TkAgg and
macosx backends currently do not work on OSX if you upgrade
matplotlib to the version required by fermipy.  To get around this
issue you can switch to the Agg backend at runtime before
importing fermipy:

>>> import matplotlib
>>> matplotlib.use('Agg')





However note that this backend does not support interactive plotting.

If you are running OSX El Capitan or newer you may see errors like the following:

dyld: Library not loaded





In this case you will need to disable the System Integrity Protections
(SIP).  See here [http://www.macworld.com/article/2986118/security/how-to-modify-system-integrity-protection-in-el-capitan.html]
for instructions on disabling SIP on your machine.

In some cases the setup.py script will fail to properly install the
fermipy package dependecies.  If installation fails you can try
running a forced upgrade of these packages with pip install --upgrade:

$ pip install --upgrade --user numpy matplotlib scipy astropy pyyaml healpy wcsaxes ipython jupyter











          

      

      

    


    
         Copyright 2016, Fermipy Developers.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
Quickstart Guide

This page walks through the steps to setup and perform a basic
spectral analysis of a source.  For additional fermipy tutorials see
the IPython Notebook Tutorials.  To more easily follow along with
this example a directory containing pre-generated input files (FT1,
source maps, etc.) is available from the following link:

$ curl -OL https://raw.githubusercontent.com/fermiPy/fermipy-extras/master/data/mkn421.tar.gz
$ tar xzf mkn421.tar.gz
$ cd mkn421






Creating a Configuration File

The first step is to compose a configuration file that defines the
data selection and analysis parameters.  Complete documentation on the
configuration file and available options is given in the Configuration
page.  fermiPy uses the YAML format [http://yaml.org/] for its
configuration files.  The configuration file has a hierarchical
organization that groups related parameters into separate
dictionaries.  In this example we will compose a configuration file
for a SOURCE-class analysis of Markarian 421 with FRONT+BACK event
types (evtype=3):

data:
  evfile : ft1.lst
  scfile : ft2.fits
  ltcube : ltcube.fits

binning:
  roiwidth   : 10.0
  binsz      : 0.1
  binsperdec : 8

selection :
  emin : 100
  emax : 316227.76
  zmax    : 90
  evclass : 128
  evtype  : 3
  tmin    : 239557414
  tmax    : 428903014
  filter  : null
  target : 'mkn421'

gtlike:
  edisp : True
  irfs : 'P8R2_SOURCE_V6'
  edisp_disable : ['isodiff','galdiff']

model:
  src_roiwidth : 15.0
  galdiff  : '$FERMI_DIFFUSE_DIR/gll_iem_v06.fits'
  isodiff  : 'iso_P8R2_SOURCE_V6_v06.txt'
  catalogs : ['3FGL']





The data section defines the input data set and spacecraft file for
the analysis.  Here evfile points to a list of FT1 files that
encompass the chosen ROI, energy range, and time selection.  The
parameters in the binning section define the dimensions of the ROI
and the spatial and energy bin size.  The selection section defines
parameters related to the data selection (energy range, zmax cut, and
event class/type).  The target parameter in this section defines
the ROI center to have the same coordinates as the given source.  The
model section defines parameters related to the ROI model definition
(diffuse templates, point sources).

Fermipy gives the user the option to combine multiple data selections
into a joint likelihood with the components section.  The components
section contains a list of dictionaries with the same hierarchy as the
root analysis configuration.  Each element of the list defines the
analysis parameters for an independent sub-selection of the data.  Any
parameters not defined within the component dictionary default to the
value defined in the root configuration.  The following example shows
the components section that could be appended to the previous
configuration to define a joint analysis with four PSF event types:

components:
  - { selection : { evtype : 4  } } # PSF0
  - { selection : { evtype : 8  } } # PSF1
  - { selection : { evtype : 16 } } # PSF2
  - { selection : { evtype : 32 } } # PSF3





Any configuration parameter can be changed with this mechanism.  The
following example is a configuration in which a different zmax
selection and isotropic template is used for each of the four PSF
event types:

components:
  - model: {isodiff: isotropic_source_psf0_4years_P8V3.txt}
    selection: {evtype: 4, zmax: 70}
  - model: {isodiff: isotropic_source_psf1_4years_P8V3.txt}
    selection: {evtype: 8, zmax: 75}
  - model: {isodiff: isotropic_source_psf2_4years_P8V3.txt}
    selection: {evtype: 16, zmax: 85}
  - model: {isodiff: isotropic_source_psf3_4years_P8V3.txt}
    selection: {evtype: 32, zmax: 90}








Creating an Analysis Script

Once the configuration file has been composed, the analysis is
executed by creating an instance of
GTAnalysis with the configuration file
as its argument and calling its analysis methods.
GTAnalysis serves as a wrapper over
the underlying pyLikelihood classes and provides methods to fix/free
parameters, add/remove sources from the model, and perform a fit to
the ROI.  For a complete documentation of the available methods you
can refer to the fermipy package page.

In the following python examples we show how to initialize and run a
basic analysis of a source.  First we instantiate a
GTAnalysis object with the path to the
configuration file and run
setup().

from fermipy.gtanalysis import GTAnalysis

gta = GTAnalysis('config.yaml',logging={'verbosity' : 3})
gta.setup()





The setup() method performs
the data preparation and response calculations needed for the analysis
(selecting the data, creating counts and exposure maps, etc.).
Depending on the data selection and binning of the analysis this will
often be the slowest step in the analysis sequence.  The output of
setup() is cached in the
analysis working directory so subsequent calls to
setup() will run much faster.

Before running any other analysis methods it is recommended to first
run optimize():

gta.optimize()





This will loop over all model components in the ROI and fit their
normalization and spectral shape parameters.  This method also
computes the TS of all sources which can be useful for identifying
weak sources that could be fixed or removed from the model.  We can
check the results of the optimization step by calling
print_roi():

gta.print_roi()





By default all models parameters are initially fixed.  The
free_source() and
free_sources() methods can be
use to free or fix parameters of the model.  In the following example
we free the normalization of catalog sources within 3 deg of the ROI
center and free the galactic and isotropic components by name.

# Free Normalization of all Sources within 3 deg of ROI center
gta.free_sources(distance=3.0,pars='norm')

# Free all parameters of isotropic and galactic diffuse components
gta.free_source('galdiff')
gta.free_source('isodiff')





The minmax_ts and minmax_npred arguments to
free_sources() can be used to
free or fixed sources on the basis of their current TS or Npred
values:

# Free sources with TS > 10
gta.free_sources(minmax_ts=[10,None],pars='norm')

# Fix sources with TS < 10
gta.free_sources(minmax_ts=[None,10],free=False,pars='norm')

# Fix sources with 10 < Npred < 100
gta.free_sources(minmax_npred=[10,100],free=False,pars='norm')





When passing a source name argument both case and whitespace are
ignored.  When using a FITS catalog file a source can also be referred
to by any of its associations.  When using the 3FGL catalog, the
following calls are equivalent ways of freeing the parameters of Mkn
421:

# These calls are equivalent
gta.free_source('mkn421')
gta.free_source('Mkn 421')
gta.free_source('3FGL J1104.4+3812')
gta.free_source('3fglj1104.4+3812')





After freeing parameters of the model we can execute a fit by calling
fit().  The will maximize the
likelihood with respect to the model parameters that are currently
free.

gta.fit()





After the fitting is complete we can write the current state of the
model with write_roi:

gta.write_roi('fit_model')





This will write several output files including an XML model file and
an ROI dictionary file.  The names of all output files will be
prepended with the prefix argument to
write_roi().

Once we have optimized our model for the ROI we can use the
residmap() and
tsmap() methods to assess the
fit quality and look for new sources.

# Dictionary defining the spatial/spectral parameters of the test source
model = {'SpatialModel' : 'PointSource', 'Index' : 2.0,
         'SpectrumType' : 'PowerLaw'}

# Both methods return a dictionary with the maps
m0 = gta.residmap('fit_model', model=model, make_plots=True)
m1 = gta.tsmap('fit_model', model=model, make_plots=True)





More documentation on these methods is available in
the TS Map and Residual Map pages.

By default, calls to fit() will
execute a global spectral fit over the entire energy range of the
analysis.  To extract a bin-by-bin flux spectrum (i.e. a SED) you can
call sed() method with the
name of the source:

gta.sed('mkn421', make_plots=True)





More information about sed()
method can be found in the SED Analysis page.




Extracting Analysis Results

Results of the analysis can be extracted from the dictionary file
written by write_roi().  This
method writes information about the current state of the analysis to a
python dictionary.  More documentation on the contents of the output
file are available in the Output File page.

By default the output dictionary is written to a file in the numpy
format [http://docs.scipy.org/doc/numpy/neps/npy-format.html] and
can be loaded from a python session after your analysis is complete.
The following demonstrates how to load the analysis dictionary that
was written to fit_model.npy in the Mkn421 analysis example:

>>> # Load analysis dictionary from a npy file
>>> import np
>>> c = np.load('fit_model.npy').flat[0]
>>> print(c.keys())
['roi', 'config', 'sources', 'version']





The output dictionary contains the following top-level elements:


File Dictionary
  
    
    
    Configuration
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
Configuration

This page describes the configuration management scheme used within
the Fermipy package and the documents the configuration parameters
that can be set in the configuration file.


Class Configuration

Classes in the Fermipy package follow a common convention for
configuring the runtime behavior of a class instance.  Internally
every class instance has a dictionary that defines its configuration
state.  Elements of the configuration dictionary can be scalars (str,
int, float) or dictionaries defining nested groups of parameters.

The class configuration dictionary is initialized at the time of
object creation by passing a dictionary or a path to YAML
configuration file to the class constructor.  Keyword arguments can be
passed to the constructor to override configuration
parameters in the input dictionary.  For instance in the following
example the config dictionary defines values for the parameters
emin and emax.  By passing a dictionary for the selection
keyword argument, the value of emax in the keyword argument (10000)
overrides the value of this parameter in the input dictionary.

config = {
'selection' : { 'emin' : 100,
                'emax' : 1000 }
}

gta = GTAnalysis(config,selection={'emax' : 10000})





The first argument can also be the path to a YAML configuration file
rather than a dictionary:

gta = GTAnalysis('config.yaml',selection={'emax' : 10000})








Configuration File

Fermipy uses YAML files to read and write its configuration in a
persistent format.  The configuration file has a hierarchical
organization that groups parameters into dictionaries that are keyed
to a section name (data, binnig, etc.).


Sample Configuration

data:
  evfile : ft1.lst
  scfile : ft2.fits
  ltfile : ltcube.fits

binning:
  roiwidth   : 10.0
  binsz      : 0.1
  binsperdec : 8

selection :
  emin : 100
  emax : 316227.76
  zmax    : 90
  evclass : 128
  evtype  : 3
  tmin    : 239557414
  tmax    : 428903014
  filter  : null
  target : 'mkn421'

gtlike:
  edisp : True
  irfs : 'P8R2_SOURCE_V6'
  edisp_disable : ['isodiff','galdiff']

model:
  src_roiwidth : 15.0
  galdiff  : '$FERMI_DIFFUSE_DIR/gll_iem_v06.fits'
  isodiff  : 'iso_P8R2_SOURCE_V6_v06.txt'
  catalogs : ['3FGL']







The configuration file mirrors the layout of the configuration
dictionary.  Most of the configuration parameters are optional and if
not set explicitly in the configuration file will be set to a default
value.  The parameters that can be set in each section are described
below.


binning

Options in the binning section control the spatial and spectral binning of the data.


Sample binning Configuration

binning:

  # Binning
  roiwidth   : 10.0
  npix       : null
  binsz      : 0.1 # spatial bin size in deg
  binsperdec : 8   # nb energy bins per decade
  projtype   : WCS








binning Options
  
    
    
    Output File
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
Output File

The current state of the ROI can be written at any point by calling
write_roi.

>>> gta.write_roi('output.npy')





The output file will contain all information about the state of the
ROI as calculated up to that point in the analysis including model
parameters and measured source characteristics (flux, TS, NPred).  An
XML model file will also be saved for each analysis component.

The output file can be read with load [http://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load]:

>>> o = np.load('output.npy').flat[0]
>>> print(o.keys())
['roi', 'config', 'sources','version']





The output file is organized in four top-level of dictionaries:


File Dictionary
  
    
    
    ROI Optimization and Fitting
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
ROI Optimization and Fitting

Source fitting with fermipy is generally performed with the
optimize and
fit methods.


Fitting

fit is a wrapper on the pyLikelihood
fit method and performs a likelihood fit of all free parameters of the
model.  This method can be used to manually optimize of the model by
calling it after freeing one or more source parameters.  The following
example demonstrates the commands that would be used to fit the
normalizations of all sources within 3 deg of the ROI center:

>>> gta.free_sources(distance=2.0,pars='norm')
>>> gta.print_params(True)
 idx parname                  value     error       min       max     scale free
--------------------------------------------------------------------------------
3FGL J1104.4+3812
  18 Prefactor                 1.77         0     1e-05       100     1e-11    *
3FGL J1109.6+3734
  24 Prefactor                 0.33         0     1e-05       100     1e-14    *
galdiff
  52 Prefactor                    1         0       0.1        10         1    *
isodiff
  55 Normalization                1         0     0.001     1e+03         1    *
>>> o = gta.fit()
2016-04-19 14:07:55 INFO     GTAnalysis.fit(): Starting fit.
2016-04-19 14:08:56 INFO     GTAnalysis.fit(): Fit returned successfully.
2016-04-19 14:08:56 INFO     GTAnalysis.fit(): Fit Quality: 3 LogLike:   -77279.869 DeltaLogLike:      501.128
>>> gta.print_params(True)
2016-04-19 14:10:02 INFO     GTAnalysis.print_params():
 idx parname                  value     error       min       max     scale free
--------------------------------------------------------------------------------
3FGL J1104.4+3812
  18 Prefactor                 2.13    0.0161     1e-05       100     1e-11    *
3FGL J1109.6+3734
  24 Prefactor                0.342    0.0904     1e-05       100     1e-14    *
galdiff
  52 Prefactor                0.897    0.0231       0.1        10         1    *
isodiff
  55 Normalization             1.15     0.016     0.001     1e+03         1    *





By default fit will repeat the fit
until a fit quality of 3 is obtained.  After the fit returns all
sources with free parameters will have their properties (flux, TS,
NPred, etc.) updated in the ROIModel instance.
The return value of the method is a dictionary containing the
following diagnostic information about the fit:


fit Output Dictionary
  
    
    
    Customizing the Model
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
Customizing the Model

The ROIModel class is responsible for managing the source and diffuse
components in the ROI.  Configuration of the model is controlled with
the model block of YAML configuration file.


Configuring Diffuse Components

The simplest configuration uses a single file for the galactic and
isotropic diffuse components.  By default the galactic diffuse and
isotropic components will be named galdiff and isodiff
respectively.  An alias for each component will also be created with
the name of the mapcube or file spectrum.  For instance the galactic
diffuse can be referred to as galdiff or gll_iem_v06 in the
following example.

model:
  src_roiwidth : 10.0
  galdiff  : '$FERMI_DIFFUSE_DIR/gll_iem_v06.fits'
  isodiff  : '$FERMI_DIFFUSE_DIR/isotropic_source_4years_P8V3.txt'
  catalogs : ['gll_psc_v14.fit']





To define two or more galactic diffuse components you can optionally define
the galdiff and isodiff parameters as lists.  A separate
component will be generated for each element in the list with the name
galdiffXX or isodiffXX where XX is an integer position in the
list.

model:
  galdiff  :
    - '$FERMI_DIFFUSE_DIR/diffuse_component0.fits'
    - '$FERMI_DIFFUSE_DIR/diffuse_component1.fits'





To explicitly set the name of a component you can define any element
as a dictionary containing name and file fields:

model:
  galdiff  :
    - { 'name' : 'component0' : 'file' : '$FERMI_DIFFUSE_DIR/diffuse_component0.fits' }
    - { 'name' : 'component1' : 'file' : '$FERMI_DIFFUSE_DIR/diffuse_component1.fits' }








Configuring Source Components

The list of sources for inclusion in the ROI model is set by defining
a list of catalogs with the catalogs parameter.  Catalog files can
be in either XML or FITS format.  Sources from the catalogs in this
list that satisfy either the src_roiwidth or src_radius selections
are added to the ROI model.  If a source is defined in multiple
catalogs the source definition from the last file in the catalogs list
takes precedence.

model:

  src_radius: 5.0
  src_roiwidth: 10.0
  catalogs :
    - 'gll_psc_v16.fit'
    - 'extra_sources.xml'





Individual sources can also be defined within the configuration file
with the sources parameter.  This parameter contains a list of
dictionaries that defines the spatial and spectral parameters of each
source.  The keys of the source dictionary map to the spectral and
spatial source properties as they would be defined in the XML model
file.

model:
  sources  :
    - { name: 'SourceA', glon : 120.0, glat : -3.0,
     SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,
     SpatialModel: 'PointSource' }
    - { name: 'SourceB', glon : 122.0, glat : -3.0,
     SpectrumType : 'LogParabola', norm : !!float 1E-11, Scale : 1000, beta : 0.0,
     SpatialModel: 'PointSource' }





For parameters defined as scalars, the scale and value properties will
be assigned automatically from the input value.  To set these manually
a parameter can also be initialized with a dictionary that explicitly
sets the value and scale properties:

model:
  sources  :
    - { name: 'SourceA', glon : 120.0, glat : -3.0,
        SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000,
        Prefactor : { value : 1.0, scale : !!float 1e-11, free : '0' },
        SpatialModel: 'PointSource' }








Spatial Models

Fermipy supports four spatial models which are defined with the
SpatialModel property:


	PointSource : A point source (SkyDirFunction).

	RadialGaussian : A symmetric 2D Gaussian with width parameter ‘Sigma’.

	RadialDisk : A symmetric 2D Disk with radius ‘Radius’.

	SpatialMap : An arbitrary 2D shape with morphology defined by a FITS template.



The spatial extension of RadialDisk and RadialGaussian can be
controlled with the SpatialWidth parameter which sets the 68%
containment radius in degrees.  Note for ST releases prior to
11-01-01, RadialDisk and RadialGaussian sources will be represented
with the SpatialMap type.

model:
  sources  :
    - { name: 'PointSource', glon : 120.0, glat : 0.0,
     SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,
     SpatialModel: 'PointSource' }
    - { name: 'DiskSource', glon : 120.0, glat : 0.0,
     SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,
     SpatialModel: 'RadialDisk', SpatialWidth: 1.0 }
    - { name: 'GaussSource', glon : 120.0, glat : 0.0,
     SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,
     SpatialModel: 'RadialGaussian', SpatialWidth: 1.0 }
    - { name: 'MapSource', glon : 120.0, glat : 0.0,
     SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,
     SpatialModel: 'SpatialTemplate', file : 'template.fits' }








Editing the Model at Runtime

The model can be manually editing at runtime with the
add_source() and
delete_source() methods.
Sources can be added either before or after calling
setup() as shown in the
following example.

from fermipy.gtanalysis import GTAnalysis

gta = GTAnalysis('config.yaml',logging={'verbosity' : 3})

# Remove isodiff from the model
gta.delete_source('isodiff')

# Add SourceA to the model
gta.add_source('SourceA',{ 'glon' : 120.0, 'glat' : -3.0,
                'SpectrumType' : 'PowerLaw', 'Index' : 2.0,
                'Scale' : 1000, 'Prefactor' : 1e-11,
                'SpatialModel' : 'PointSource' })

gta.setup()

# Add SourceB to the model
gta.add_source('SourceB',{ 'glon' : 121.0, 'glat' : -2.0,
                 'SpectrumType' : 'PowerLaw', 'Index' : 2.0,
                 'Scale' : 1000, 'Prefactor' : 1e-11,
                 'SpatialModel' : 'PointSource' })





Sources added before calling
setup() will be appended to
the XML model definition.  Sources added after calling
setup() will be created
dynamically through the pyLikelihood object creation mechanism.







          

      

      

    


    
         Copyright 2016, Fermipy Developers.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Advanced Analysis Methods
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 
 
      

    


    
      
          
            
  
Advanced Analysis Methods

This page documents some of the more advanced methods and features
available in Fermipy:


	TS Map: Generate a test statistic (TS) map for a new source
centered at each spatial bin in the ROI.

	TS Cube: Generate a TS map using the gttscube ST
application.  In addition to generating a TS map this method can
also extract a test source likelihood profile as a function of
energy and position over the whole ROI.

	Residual Map: Generate a residual map by evaluating the
difference between smoothed data and model maps (residual) at each
spatial bin in the ROI.

	Source Finding: Find new sources using an iterative
source-finding algorithim.  Adds new sources to the ROI by looking
for peaks in the TS map.

	SED Analysis: Compute the spectral energy distribution of a source by
fitting its amplitude in a sequence of energy bins.

	Light Curves: Compute the lightcurve of a source by fitting its
amplitude in a sequence of time bins.

	Extension Fitting: Fit the angular extension of a source.

	Source Localization: Find the best-fit position of a source.

	Phased Analysis: Instructions for performing a phased-selected analysis.

	Sensitivity Tools: Scripts and classes for estimating sensitivity.










          

      

      

    


    
         Copyright 2016, Fermipy Developers.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    SED Analysis
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 

          	Advanced Analysis Methods 
 
      

    


    
      
          
            
  
SED Analysis

The sed() method computes a
spectral energy distribution (SED) by fitting for the flux
normalization of a source in a sequence of energy bins.  The
normalization in each bin is fit independently using a power-law
spectrum with a fixed index.  The value of this index can be set with
the bin_index parameter or allowed to vary over the energy range
according to the local slope of the global spectral model (with the
use_local_index parameter).

The free_background and cov_scale parameters can be used to
control how nuisance parameters are dealt with in the fit.  By default
this method will fix the parameters of background components ROI when
fitting the source normalization in each energy bin
(free_background = False).  Setting free_background to True will
profile the normalizations of all background components that were free
when the method was executed.  In order to minimize overfitting,
background normalization parameters are constrained with priors taken
from the global fit.  The strength of the priors is controlled with
the cov_scale parameter.  A larger (smaller) value of
cov_scale applies a weaker (stronger) constraint on the background
amplitude.  Setting cov_scale to None can be used to perform the
fit without priors.


Examples

The sed() method is executed
by passing the name of a source in the ROI as a single argument.
Additional keyword argument can also be provided to override the
default configuration of the method:

# Run analysis with default energy binning
sed = gta.sed('sourceA')

# Override the energy binning and the assumed power-law index
# within the bin
sed = gta.sed('sourceA', loge_bins=[2.0,2.5,3.0,3.5,4.0,4.5,5.0], bin_index=2.3)

# Profile background normalization parameters with prior scale of 5.0
sed = gta.sed('sourceA', free_background=True, cov_scale=5.0)





By default the method will use the energy bins of the underlying
analysis.  The loge_bins keyword argument can be used to override
the default binning with the restriction that the SED energy bins
most align with the analysis bins.

The return value of sed() is a
dictionary with the results of the analysis.  The output dictionary is
also saved to the sed dictionary of the
Source instance which is written to the output
file generated by write_roi().

The following example shows how the output dictionary can be captured
from either from the method return value or later accessed from the
ROIModel instance:

# Get the sed results from the return argument
sed = gta.sed('sourceA')

# Get the sed results from the source object
sed = gta.roi['sourceA']

# Print the SED flux values
print(sed['flux'])





The contents of the FITS file and output dictionary are documented in
SED FITS File and SED Dictionary.




SED FITS File

The following table describes the contents of the FITS file written by
sed().  The SED HDU uses
that data format specification for SEDs documented here [https://gamma-astro-data-formats.readthedocs.io/en/latest/results/flux_points/index.html].


sed Output Dictionary
  
    
    
    Light Curves
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 

          	Advanced Analysis Methods 
 
      

    


    
      
          
            
  
Light Curves

lightcurve() can be used to
fit charateristics of a source (flux, TS, etc.) in a sequence of time
bins.


Examples

# Generate a lightcurve with two bins
lc = gta.lightcurve('sourceA', nbins=2)

# Generate a lightcurve with 1-week binning
lc = gta.lightcurve('sourceA', binsz=86400.*7.0)

# Generate a lightcurve freeing sources within 3 deg of the source
# of interest
lc = gta.lightcurve('sourceA', binsz=86400.*7.0, free_radius=3.0)








Reference/API


	
GTAnalysis.lightcurve(name, **kwargs)

	Generate a lightcurve for the named source. The function will
complete the basic analysis steps for each bin and perform a
likelihood fit for each bin. Extracted values (along with
errors) are Integral Flux, spectral model, Spectral index, TS
value, pred. # of photons.





	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – source name

	binsz (float [http://docs.python.org/library/functions.html#float]) – Set the lightcurve bin size in seconds. (default : 86400.0)

	free_background (bool [http://docs.python.org/library/functions.html#bool]) – Leave background parameters free when performing the fit. If
True then any parameters that are currently free in the
model will be fit simultaneously with the source of
interest. (default : False)

	free_params (list [http://docs.python.org/library/functions.html#list]) – Set the parameters of the source of interest that will be
re-fit in each time bin. If this list is empty then all
parameters will be freed. (default : None)

	free_radius (float [http://docs.python.org/library/functions.html#float]) – Free normalizations of background sources within this
angular distance in degrees from the source of interest.  If
None then no sources will be freed. (default : None)

	free_sources (list [http://docs.python.org/library/functions.html#list]) – List of sources to be freed.  These sources will be added to
the list of sources satisfying the free_radius selection.
(default : None)

	make_plots (bool [http://docs.python.org/library/functions.html#bool]) – Generate diagnostic plots. (default : False)

	nbins (int [http://docs.python.org/library/functions.html#int]) – Set the number of lightcurve bins.  The total time range
will be evenly split into this number of time bins. (default
: None)

	time_bins (list [http://docs.python.org/library/functions.html#list]) – Set the lightcurve bin edge sequence in MET.  This option
takes precedence over binsz and nbins. (default : None)

	use_local_ltcube (bool [http://docs.python.org/library/functions.html#bool]) – (default : True)

	write_fits (bool [http://docs.python.org/library/functions.html#bool]) – Write the output to a FITS file. (default : True)

	write_npy (bool [http://docs.python.org/library/functions.html#bool]) – Write the output dictionary to a numpy file. (default :
True)






	Returns:	LightCurve –
Dictionary containing output of the LC analysis




	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

















          

      

      

    


    
         Copyright 2016, Fermipy Developers.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Extension Fitting
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 

          	Advanced Analysis Methods 
 
      

    


    
      
          
            
  
Extension Fitting

The extension() method
executes a source extension analysis for a given source by computing a
likelihood ratio test with respect to the no-extension (point-source)
hypothesis and a best-fit model for extension.  The best-fit extension
is found by performing a likelihood profile scan over the source width
(68% containment) and fitting for the extension that maximizes the
model likelihood.  Currently this method supports two models for
extension: a 2D Gaussian (RadialGaussian) or a 2D disk
(RadialDisk).

At runtime the default settings for the extension analysis can be
overriden by passing one or more kwargs when executing
extension():

# Run extension fit of sourceA with default settings
>>> gta.extension('sourceA')

# Override default spatial model
>>> gta.extension('sourceA', spatial_model='RadialDisk')





By default the method will fix all background parameters before
performing the extension fit.  One can leave background parameters
free by setting free_background=True:

# Free a nearby source that maybe be partially degenerate with the
# source of interest.  The normalization of SourceB will be refit
# when testing the extension of sourceA
gta.free_norm('sourceB')
gta.extension('sourceA', free_background=True)

# Fix all background parameters when testing the extension
# of sourceA
gta.extension('sourceA', free_background=False)

# Free normalizations of sources within 2 degrees of sourceA
gta.extension('sourceA', free_radius=2.0)





The results of the extension analysis are written to a dictionary
which is the return value of the extension method.

ext = gta.extension('sourceA', write_npy=True, write_fits=True)





The contents of the output dictionary are given in the following table:


extension Output Dictionary
  
    
    
    TS Map
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 

          	Advanced Analysis Methods 
 
      

    


    
      
          
            
  
TS Map

tsmap() generates a test
statistic (TS) map for an additional source component centered at each
spatial bin in the ROI.  The methodology is similar to that of the
gttsmap ST application but with the following approximations:


	Evaluation of the likelihood is limited to pixels in the vicinity of
the test source position.

	The background model is fixed when fitting the test source amplitude.



TS Cube is a related method that can also be used to generate TS
maps as well as cubes (TS vs. position and energy).

For each spatial bin the method calculates the maximum likelihood test
statistic given by


\[\mathrm{TS} = 2 \sum_{k} \ln L(\mu,\theta|n_{k}) - \ln L(0,\theta|n_{k})\]

where the summation index k runs over both spatial and energy bins,
μ is the test source normalization parameter, and θ represents the
parameters of the background model.  The likelihood fitting
implementation used by tsmap()
only fits the test source normalization (μ).  Shape parameters of the
test source and parameters of background components are fixed to their
current values.


Examples

The spatial and spectral properties of the convolution kernel are
defined with the model dictionary argument.  The model
dictionary format is the same as accepted by
add_source().

# Generate TS map for a power-law point source with Index=2.0
model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
maps = gta.tsmap('fit1',model=model)

# Generate TS map for a power-law point source with Index=2.0 and
# restricting the analysis to E > 3.16 GeV
model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
maps = gta.tsmap('fit1_emin35',model=model,erange=[3.5,None])

# Generate TS maps for a power-law point source with Index=1.5, 2.0, and 2.5
model={'SpatialModel' : 'PointSource'}
maps = []
for index in [1.5,2.0,2.5]:
    model['Index'] = index
    maps += [gta.tsmap('fit1',model=model)]





The multithread option can be enabled to split the calculation
across all available cores:

maps = gta.tsmap('fit1',model=model,multithread=True)





Note that care should be taken when using this option in an
environment where the number of cores per process is restricted such
as a batch farm.

tsmap() returns a maps
dictionary containing Map representations of the TS
and predicted counts (NPred) of the best-fit test source at each position.

model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
maps = gta.tsmap('fit1',model=model)
print('TS at Pixel (50,50): ',maps['ts'].counts[50,50])





The contents of the output dictionary are given in the following table.








	Key
	Type
	Description




	amplitude
	Map
	Best-fit test source amplitude
expressed in terms of the spectral prefactor.


	npred
	Map
	Best-fit test source amplitude
expressed in terms of the total model counts (Npred).


	ts
	Map
	Test source TS (twice the logLike difference between null and
alternate hypothese).


	sqrt_ts
	Map
	Square-root of the test source TS.


	file
	str
	Path to a FITS file containing the maps (TS, etc.) generated by
this method.


	src_dict
	dict
	Dictionary defining the properties of the test source.





The write_fits and write_npy options can used to write the
output to a FITS or numpy file.  All output files are prepended with
the prefix argument.

Diagnostic plots can be generated by setting make_plots=True or by
passing the output dictionary to
make_residmap_plots:

maps = gta.tsmap('fit1',model=model, make_plots=True)
gta.plotter.make_tsmap_plots(maps, roi=gta.roi)





This will generate the following plots:


	tsmap_sqrt_ts : Map of sqrt(TS) values.  The color map is truncated at
5 sigma with isocontours at 2 sigma intervals indicating values
above this threshold.

	tsmap_npred : Map of best-fit source amplitude in counts.

	tsmap_ts_hist : Histogram of TS values for all points in the
map. Overplotted is the reference distribution for chi-squared with
one degree of freedom (expectation from Chernoff’s theorem).









	Sqrt(TS) Map
	TS Histogram




	[image: image_sqrt_ts]
	[image: image_ts_hist]








Configuration

The default configuration of the method is controlled with the
tsmap section of the configuration file.  The default
configuration can be overriden by passing the option as a kwargs
argument to the method.


tsmap Options
  
    
    
    TS Cube
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 

          	Advanced Analysis Methods 
 
      

    


    
      
          
            
  
TS Cube


Warning

This method requires Fermi Science Tools version 11-04-00
or later.



tscube() can be used generate
both test statistic (TS) maps and bin-by-bin scans of the test source
likelihood as a function of spatial pixel and energy bin (likelihood cubes).
The implemention is based on the gttscube ST application which uses
an efficient newton optimization algorithm for fitting the test source at
each pixel in the ROI.

The TS map output has the same format as TS maps produced by
tsmap() (see TS Map for
further details).  However while
tsmap() fixes the background
model, tscube() can also fit
background normalization parameters when scanning the test source
likelihood.  This method makes no approximations in the
evaluation of the likelihood and may be somewhat slower than
tsmap() depending on the ROI
dimensions and energy bounds.

For each spatial bin the method calculates the maximum likelihood test
statistic given by


\[\mathrm{TS} = 2 \sum_{k} \ln L(\mu,\hat{\theta}|n_{k}) - \ln L(0,\hat{\hat{\theta}}|n_{k})\]

where the summation index k runs over both spatial and energy bins,
μ is the test source normalization parameter, and θ represents the
parameters of the background model.  Normalization parameters of the
background model are refit at every test source position if they are
free in the model.  All other spectral parameters (indices etc.) are
kept fixed.


Examples

The method is executed by providing a model dictionary argument that
defines the spectrum and spatial morphology of the test source:

# Generate TS cube for a power-law point source with Index=2.0
model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
cube = gta.tscube('fit1',model=model)

# Generate TS cube for a power-law point source with Index=2.0 and
# restricting the analysis to E > 3.16 GeV
model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
cube = gta.tscube('fit1_emin35',model=model,erange=[3.5,None])

# Generate TS cubes for a power-law point source with Index=1.5, 2.0, and 2.5
model={'SpatialModel' : 'PointSource'}
cubes = []
for index in [1.5,2.0,2.5]:
    model['Index'] = index
    cubes += [gta.tsmap('fit1',model=model)]





In addition to generating a TS map, this method can also extract a
test source likelihood profile as a function of energy at every
position in the ROI (likelihood cube).  This information is saved to
the SCANDATA HDU of the output FITS file:

from astropy.table import Table
cube = gta.tscube('fit1',model=model, do_sed=True)
tab_scan = Table.read(cube['file'],'SCANDATA')
tab_ebounds = Table.read(cube['file'],'EBOUNDS')

eflux_scan = tab_ebounds['REF_EFLUX'][None,:,None]*tab_scan['norm_scan']

# Plot likelihood for pixel 400 and energy bin 2
plt.plot(eflux_scan[400,2],tab_scan['dloglike_scan'][400,2])





The likelihood profile cube can be used to evaluate the likelihood for
a test source with an arbitrary spectral model at any position in the
ROI.  The TSCube and CastroData
classes can be used to analyze a TS cube:

from fermipy.castro import TSCube
tscube = TSCube.create_from_fits('tscube.fits')
cd = tscube.castroData_from_ipix(400)

# Fit the likelihoods at pixel 400 with different spectral models
cd.test_spectra()








Configuration

The default configuration of the method is controlled with the
tscube section of the configuration file.  The default
configuration can be overriden by passing the option as a kwargs
argument to the method.


tscube Options
  
    
    
    Residual Map
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 

          	Advanced Analysis Methods 
 
      

    


    
      
          
            
  
Residual Map

residmap() calculates the
residual between smoothed data and model maps.  Whereas a TS map is
only sensitive to positive deviations with respect to the model,
residmap() is sensitive to
both positive and negative residuals and therefore can be useful for
assessing the model goodness-of-fit.  The significance of the
data/model residual at map position (i, j) is given by


\[\sigma_{ij}^2 = 2 \mathrm{sgn}(\tilde{n}_{ij} - \tilde{m}_{ij})
\left(\ln L_{P}(\tilde{n}_{ij},\tilde{n}_{ij}) - \ln L_{P}(\tilde{n}_{ij},\tilde{m}_{ij})\right)\]


\[\mathrm{with} \quad
\tilde{m}_{ij} = \sum_{k} (m_{k} \ast f_{k})_{ij} \quad \tilde{n}_{ij} = \sum_{k}(n_{k} \ast f_{k})_{ij}
\quad \ln L_{P}(n,m) = n\ln(m) - m\]

where nk and mk are the data and model maps at
energy plane k and fk is the convolution kernel.  The
convolution kernel is proportional to the counts expectation at a
given pixel and normalized such that


\[f_{ijk} = s_{ijk} \left(\sum_{ijk} s_{ijk}^{2}\right)^{-1}\]

where s is the expectation counts cube for a pure signal normalized to one.


Examples

The spatial and spectral properties of the convolution kernel are
defined with the model dictionary argument.  All source models are
supported as well as a gaussian kernel (defined by setting
SpatialModel to Gaussian).

# Generate residual map for a Gaussian kernel with Index=2.0 and
# radius (R_68) of 0.3 degrees
model = {'Index' : 2.0,
         'SpatialModel' : 'Gaussian', 'SpatialWidth' : 0.3 }
maps = gta.residmap('fit1',model=model)

# Generate residual map for a power-law point source with Index=2.0 for
# E > 3.16 GeV
model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
maps = gta.residmap('fit1_emin35',model=model,erange=[3.5,None])

# Generate residual maps for a power-law point source with Index=1.5, 2.0, and 2.5
model={'SpatialModel' : 'PointSource'}
maps = []
for index in [1.5,2.0,2.5]:
    model['Index'] = index
    maps += [gta.residmap('fit1',model=model)]





residmap() returns a maps
dictionary containing Map representations of the
residual significance and amplitude as well as the smoothed data and
model maps.  The contents of the output dictionary are described in
the following table.








	Key
	Type
	Description




	sigma
	Map
	Residual significance in sigma.


	excess
	Map
	Residual amplitude in counts.


	data
	Map
	Smoothed counts map.


	model
	Map
	Smoothed model map.


	files
	dict
	File paths of the FITS image
files generated by this method.


	src_dict
	dict
	Source dictionary with the
properties of the convolution kernel.





The write_fits and write_npy options can used to write the
output to a FITS or numpy file.  All output files are prepended with
the prefix argument.

Diagnostic plots can be generated by setting make_plots=True or by
passing the output dictionary to
make_residmap_plots:

maps = gta.residmap('fit1',model=model, make_plots=True)
gta.plotter.make_residmap_plots(maps, roi=gta.roi)





This will generate the following plots:


	residmap_excess : Smoothed excess map (data-model).

	residmap_data : Smoothed data map.

	residmap_model : Smoothed model map.

	residmap_sigma : Map of residual significance.  The color map is
truncated at -5 and 5 sigma with labeled isocontours at 2 sigma intervals
indicating values outside of this range.

	residmap_sigma_hist : Histogram of significance values for all
points in the map. Overplotted are distributions for the best-fit
Gaussian and a unit Gaussian.









	Residual Significance Map
	Significance Histogram




	[image: image_sigma]
	[image: image_sigma_hist]








Configuration

The default configuration of the method is controlled with the
residmap section of the configuration file.  The default
configuration can be overriden by passing the option as a kwargs
argument to the method.


residmap Options
  
    
    
    Source Finding
    
    

    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Fermipy 0.13.4+dirty documentation 

          	Advanced Analysis Methods 
 
      

    


    
      
          
            
  
Source Finding

find_sources() is an iterative
source-finding algorithm that uses peak detection on a TS map to find
new source candidates.  The procedure for adding new sources at each
iteration is as follows:


	Generate a TS map for the test source model defined with the model
argument.

	Identify peaks with sqrt(TS) > sqrt_ts_threshold and an angular
distance of at least min_separation from a higher amplitude peak
in the map.

	Order the peaks by TS and add a source at each peak starting from
the highest TS peak.  Set the source position by fitting a 2D
parabola to the log-likelihood surface around the peak maximum.
After adding each source, re-fit its spectral parameters.

	A