Fermipy Documentation
Release 0.19.0+dirty

Matthew Wood

Mar 25, 2020

Contents

1 Introduction 1
1.1 Getting Help o o e e e e 1

1.2 Acknowledging Fermipy 1

1.3 Documentation CONeNtS v v v vt it et e e e e e e e e e e e e e 2
1.3.1 Installation L e e e e 2

1.3.2 Quickstart Guide e e e e e 7

1.3.3 Configuration 0 e e e e e e e e e e e e e e 13

1.3.4 OutputFile e 25

1.3.5 ROIOptimizationand Fitting o 28

1.3.6 Customizingthe Model 30

1.3.7 Developer NOteS o o o vt e e e e e e e e e e e e e e e e e e e 33

1.3.8 Advanced Analysis Methods 33

1.3.9 Validation Tools L e 58

1.3.10 fermipy package e 58

1.3.11 fermipy.jobs subpackage 114

1.3.12 fermipy.diffuse subpackage 154

1.3.13 Changelog o o e e e e e e e e 200

2 Indices and tables 207
Python Module Index 209
Index 211

CHAPTER 1

Introduction

This is the Fermipy documentation page. Fermipy is a python package that facilitates analysis of data from the Large
Area Telescope (LAT) with the Fermi Science Tools. For more information about the Fermi mission and the LAT
instrument please refer to the Fermi Science Support Center.

The Fermipy package is built on the pyLikelihood interface of the Fermi Science Tools and provides a set of high-level
tools for performing common analysis tasks:

* Data and model preparation with the gt-tools (gtselect, gtmktime, etc.).
 Extracting a spectral energy distribution (SED) of a source.

* Generating TS and residual maps for a region of interest.

* Finding new source candidates.

* Localizing a source or fitting its spatial extension.

Fermipy uses a configuration-file driven workflow in which the analysis parameters (data selection, IRFs, and ROI
model) are defined in a YAML configuration file. Analysis is executed through a python script that calls the methods
of GTAnalysis to perform different analysis operations.

For instructions on installing Fermipy see the Installation page. For a short introduction to using Fermipy see the
Quickstart Guide.

1.1 Getting Help

If you have questions about using Fermipy please open a GitHub Issue or email the Fermipy developers.

1.2 Acknowledging Fermipy

To acknowledge Fermipy in a publication please cite Wood et al. 2017.

http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/
http://fermi.gsfc.nasa.gov/ssc/
https://github.com/fermiPy/fermipy/issues
mailto:fermipy.developers@gmail.com
https://ui.adsabs.harvard.edu/#abs/2017ICRC...35..824W

Fermipy Documentation, Release 0.19.0+dirty

1.3 Documentation Contents

1.3.1 Installation

Note: From version 0.19.0 fermipy is only compatible with fermitools version 1.2.23 or later. If you are using an
earlier version, you will need to download and install the latest version from the FSSC.

These instructions assume that you already have a local installation of the fermitools. For more information about
installing and setting up the fermitools see Installing the fermitools. For we currently recommend following the
Installing Anaconda Python instructions. However the Installing with pip instructions should also work. The Installing
with Docker instructions can be used to install the fermitools on OSX and Linux machines that are new enough to
support Docker. To install the development version of Fermipy follow the Installing From Source instructions.

The condainstall.sh script

The recommended way to install fermipy and the fermitools is by using the condainstall.sh script included in the
package. This script properly handles a rather complicated set of interdependencies between fermipy, the fermitools
and packages they depend on.

$ curl -OL https://raw.githubusercontent.com/fermiPy/fermipy/master/condainstall.sh

$ export CONDA_PATH=<path to your conda installation>
$ source condainstall.sh

This script optionally uses a number of other environmental variarbles to control how the installtion is set up. The
important ones and their default values are listed below. Unless you want to override some of these values you can
leave them as is:

$ export PYTHON_VERSION=2.7

$ export CONDA_DEPS="scipy matplotlib pyyaml numpy astropy gammapy healpy"

$ # This should point at your conda installation, or at the place you would like to_
—install conda

export CONDA_PATH="S$SHOME/minconda"

This is the name that will be given to the conda environment created for fermipy
export FERMIPY_ CONDA_ENV="fermipy"

This is the command used to install the fermitools.

Set it to an empty string if you do not want to install the fermitools

of if you have already installed them.

export ST_INSTALL="conda install -y --name S$FERMIPY_ CONDA_ENV S$SFERMI_CONDA_CHANNELS_,
<—c SCONDA_CHANNELS fermitools"

$ # This is the command used install fermipy.

$ # If you want to install for source or use a different version of

$ # fermipy you should change this

$ export INSTALL_CMD="conda install -y --name S$FERMIPY_CONDA_ENV -c $CONDA_CHANNELS
—fermipy"

v W r 0 0 Uy

Installing the fermitools

Note: If you used the condainstall.sh script, it should have already installed the fermitools. This example is if you
want to install the fermitools without using that script.

2 Chapter 1. Introduction

http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/

Fermipy Documentation, Release 0.19.0+dirty

The fermitools are a prerequisite for fermipy. The following example illustrates how the fermitools in an existing
anaconda installation.

$ conda create —--name fermipy -y python=S$PYTHON_VERSION

$ conda activate fermipy

$ conda install -y —-name fermipy —-c conda-forge/label/cf201901 -c
fermi -c conda-forge fermitools"

More information about installing the fermitools is available on the FSSC software page. More information about
setting up an anaconda installation is included in the Installing Anaconda Python instructions below.

The diffuse emission models

Starting with fermipy version 0.19.0, we are using the diffuse and istoropic emission model from the fermitools-data
package rather than including them in fermipy. However, for working on older analyses created with earlier version of
fermipy you can set the FERMI_DIFFUSE_DIR environmental variable to point at a directory that include the version
of the models that you wish to use.

Installing with pip

These instructions cover installation with the pip package management tool. This will install fermipy and its depen-
dencies into the conda distribution that contains the fermitools. We will assume that you have installed the fermitools
in a conda environment called “fermi”. First verify that you’ve installed from the fermitools

$ conda activate fermi
$ which girfs

If this doesn’t point to the gtirfs in your fermitools install then the fermitools are not properly set up.

Until the fermitools moves to python 3, we recommend making sure that this environment includes python and pip

$ conda activate fermi
$ which girfs
$ which pip

Both the gtirfs and pip should point to the versions installed in the fermi environment.

Because of some issues with the dependendies in fermitoolts and gammapy we recommend installing the dependedcies
using conda.

$ conda install -n fermi -y -c conda-forge scipy matplotlib pyyaml numpy astropy.,
—gammapy healpy
$ pip install fermipy

To run the ipython notebook examples you will also need to install jupyter notebook:

$ pip install jupyter

Finally, check that fermipy imports:

$ python

Python 2.7.8 (default, Aug 20 2015, 11:36:15)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from fermipy.gtanalysis import GTAnalysis

>>> help (GTAnalysis)

1.3. Documentation Contents 3

http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/

Fermipy Documentation, Release 0.19.0+dirty

Installing Anaconda Python

These instructions cover how to use fermipy with a new or existing anaconda python installation.

If you do not have an anaconda installation, the condainstall. sh script can be used to create a minimal anaconda
installation from scratch. First download and source the condainstall. sh script from the fermipy repository:

$ curl -OL https://raw.githubusercontent.com/fermiPy/fermipy/master/condainstall.sh
$ source condainstall.sh

If you do not already have anaconda python installed on your system this script will create a new installation under
$SHOME/miniconda. If you already have anaconda installed and the conda command is in your path the script will
use your existing installation.

Installing with Docker

Note: This method for installing the STs is currently experimental and has not been fully tested on all operating
systems. If you encounter issues please try either the pip- or anaconda-based installation instructions.

Docker is a virtualization tool that can be used to deploy software in portable containers that can be run on any
operating system that supports Docker. Before following these instruction you should first install docker on your ma-
chine following the installation instructions for your operating system. Docker is currently supported on the following
operating systems:

* macOS 10.10.3 Yosemite or later
* Ubuntu Precise 12.04 or later

* Debian 8.0 or later

RHELT7 or later

* Windows 10 or later
Note that Docker is not supported by RHELG or its variants (CentOS6, Scientific Linux 6).

These instructions describe how to create a docker-based ST installation that comes preinstalled with anaconda python
and fermipy. The installation is fully contained in a docker image that is roughly 2GB in size. To see a list of the
available images go to the fermipy Docker Hub page. Images are tagged with the release version of the STs that was
used to build the image (e.g. 11-05-00). The latest tag points to the image for the most recent ST release.

To install the latest image first download the image file:

’$ docker pull fermipy/fermipy

Now switch to the directory where you plan to run your analysis and execute the following command to launch a
docker container instance:

’$ docker run —-it —--rm -p 8888:8888 —-v SPWD:/workdir -w /workdir fermipy/fermipy

This will start an ipython notebook server that will be attached to port 8888. Once you start the server it will print
a URL that you can use to connect to it with the web browser on your host machine. The -v $PWD:/workdir
argument mounts the current directory to the working area of the container. Additional directories may be mounted by
adding more volume arguments —v with host and container paths separated by a colon.

The same docker image may be used to launch python, ipython, or a bash shell by passing the command as an argument
to docker run:

4 Chapter 1. Introduction

https://docs.docker.com/engine/installation/
https://hub.docker.com/r/fermipy/fermipy/tags/

Fermipy Documentation, Release 0.19.0+dirty

$ docker run -it —--rm -v SPWD:/workdir -w /workdir fermipy/fermipy ipython
$ docker run -it --rm -v S):/workdir -w /workdir fermipy/fermipy python
$ docker run -it —--rm -v SPWD:/workdir -w /workdir fermipy/fermipy /bin/bash

By default interactive graphics will not be enabled. The following commands can be used to enable X11 forwarding
for interactive graphics on an OSX machine. This requires you to have installed XQuartz 2.7.10 or later. First enable
remote connections by default and start the X server:

$ defaults write org.macosforge.xquartz.X1ll nolisten_tcp -boolean false
$ open -a XQuartz

Now check that the X server is running and listening on port 6000:

S lsof -1 :6000

If you don’t see X11 listening on port 6000 then try restarting XQuartz.

Once you have XQuartz configured you can enable forwarding by setting DISPLAY environment variable to the IP
address of the host machine:

$ export HOST_ IP="ifconfig en0 | grep "inet " | cut -d " " -f2°
$ xhost +local:

$ docker run -it —--rm -e DISPLAY=SHOST IP:0 -v S$PWD:/workdir -w /workdir fermipy,,
—ipython

Installing From Source

The instructions describe how to install development versions of Fermipy from source code. Before installing a
development version we recommend first installing a tagged release following the Installing with pip or Installing
Anaconda Python instructions above.

git clone https://github.com/fermiPy/fermipy.git
cd fermipy

export INSTALL_CMD=" "

source condainstall.sh

Consider using python setup.py develop

1f you are doing active development

python setup.py install

v v v vy

Upgrading

By default installing fermipy with pip or conda will get the latest tagged released available on the PyPi package
respository. You can check your currently installed version of fermipy with pip show:

’$ pip show fermipy

or conda info:

’$ conda info fermipy

To upgrade your fermipy installation to the latest version run the pip installation command with ——upgrade
—-—-no-deps (remember to also include the ——user option if you’re running at SLAC):

1.3. Documentation Contents 5

https://pypi.python.org/pypi

Fermipy Documentation, Release 0.19.0+dirty

$ pip install fermipy —--upgrade --no-deps
Collecting fermipy
Installing collected packages: fermipy
Found existing installation: fermipy 0.6.6
Uninstalling fermipy-0.6.6:
Successfully uninstalled fermipy-0.6.6
Successfully installed fermipy-0.6.7

If you installed fermipy with conda the equivalent command is:

$ conda update fermipy

Developer Installation

These instructions describe how to install fermipy from its git source code repository using the setup.py script.
Installing from source can be useful if you want to make your own modifications to the fermipy source code. Note that
non-developers are recommended to install a tagged release of fermipy following the Installing with pip or Installing
Anaconda Python instructions above.

First clone the fermipy git repository and cd to the root directory of the repository:

$ git clone https://github.com/fermiPy/fermipy.git
$ cd fermipy

$ export INSTALL_CMD=" "

$

source condainstall.sh

To install the latest commit in the master branch run setup.py install from the root directory:

Install the latest commit
$ git checkout master
$ python setup.py install —--user

A useful option if you are doing active code development is to install your working copy of the package. This will
create an installation in your python distribution that is linked to the copy of the code in your local repository. This
allows you to run with any local modifications without having to reinstall the package each time you make a change.
To install your working copy of fermipy run with the develop argument:

Install a link to your source code installation
$ python setup.py develop —--user

You can later remove the link to your working copy by running the same command with the ——uninstall flag:

Install a link to your source code installation
$ python setup.py develop —--user —--uninstall

Specific release tags can be installed by running git checkout before running the installation command:

Checkout a specific release tag
$ git checkout X.X.X
$ python setup.py install —--user

To see the list of available release tags run git tag.

6 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

Issues

If you get an error about importing matplotlib (specifically something about the macosx backend) you might change
your default backend to get it working. The customizing matplotlib page details the instructions to modify your default
matplotlibre file (you can pick GTK or WX as an alternative). Specifically the TkAgg and macosx backends currently
do not work on OSX if you upgrade matplotlib to the version required by fermipy. To get around this issue you can
switch to the Agg backend at runtime before importing fermipy:

>>> import matplotlib
>>> matplotlib.use ('Agg')

However note that this backend does not support interactive plotting.

If you are running OSX EI Capitan or newer you may see errors like the following:

dyld: Library not loaded

In this case you will need to disable the System Integrity Protections (SIP). See here for instructions on disabling SIP
on your machine.

In some cases the setup.py script will fail to properly install the fermipy package dependecies. If installation fails you
can try running a forced upgrade of these packages with pip install --upgrade:

$ pip install --upgrade —--user numpy matplotlib scipy astropy pyyaml healpy wcsaxes,
—ipython jupyter

1.3.2 Quickstart Guide

This page walks through the steps to setup and perform a basic spectral analysis of a source. For additional fermipy
tutorials see the /Python Notebook Tutorials. To more easily follow along with this example a directory containing
pre-generated input files (FT1, source maps, etc.) is available from the following link:

$ curl -OL https://raw.githubusercontent.com/fermiPy/fermipy-extras/master/data/
—mkn42l.tar.gz

$ tar xzf mkn42l.tar.gz

$ cd mkn421

Creating a Configuration File

The first step is to compose a configuration file that defines the data selection and analysis parameters. Complete
documentation on the configuration file and available options is given in the Configuration page. fermiPy uses the
YAML format for its configuration files. The configuration file has a hierarchical organization that groups related
parameters into separate dictionaries. In this example we will compose a configuration file for a SOURCE-class
analysis of Markarian 421 with FRONT+BACK event types (evtype=3):

data:
evfile : ftl.lst
scfile : ft2.fits
ltcube : ltcube.fits

binning:
roiwidth : 10.0
binsz : 0.1

binsperdec : 8

(continues on next page)

1.3. Documentation Contents 7

http://matplotlib.org/users/customizing.html
http://www.macworld.com/article/2986118/security/how-to-modify-system-integrity-protection-in-el-capitan.html
http://yaml.org/

Fermipy Documentation, Release 0.19.0+dirty

(continued from previous page)

selection
emin : 100
emax : 316227.76
zmax : 90
evclass : 128
evtype : 3
tmin : 239557414
tmax : 428903014
filter : null
target : 'mkn421'
gtlike:
edisp : True
irfs : '"P8R2_SOURCE_V6'
edisp_disable : ['isodiff', 'galdiff']
model:
src_roiwidth : 15.0
galdiff : 'SFERMI_DIFFUSE_DIR/gll_iem v06.fits'
isodiff : 'iso P8R2_SOURCE_V6_v06.txt'
catalogs : ['3FGL']

The data section defines the input data set and spacecraft file for the analysis. Here evfile points to a list of FT1
files that encompass the chosen ROI, energy range, and time selection. The parameters in the binning section define
the dimensions of the ROI and the spatial and energy bin size. The selection section defines parameters related to
the data selection (energy range, zmax cut, and event class/type). The target parameter in this section defines the
ROI center to have the same coordinates as the given source. The model section defines parameters related to the ROI
model definition (diffuse templates, point sources).

Fermipy gives the user the option to combine multiple data selections into a joint likelihood with the components sec-
tion. The components section contains a list of dictionaries with the same hierarchy as the root analysis configuration.
Each element of the list defines the analysis parameters for an independent sub-selection of the data. Any parameters
not defined within the component dictionary default to the value defined in the root configuration. The following
example shows the components section that could be appended to the previous configuration to define a joint analysis
with four PSF event types:

components:
- { selection { evtype } # PSFO
- { selection { evtype } # PSF1
- { selection { evtype } # PSF2
- { selection { evtype } # PSF3

Any configuration parameter can be changed with this mechanism. The following example is a configuration in which
a different zmax selection and isotropic template is used for each of the four PSF event types:

components:
- model: {isodiff: isotropic_source_ psfO_4dyears P8V3.txt}
selection: {evtype: 4, zmax: 70}
- model: {isodiff: isotropic_source_psfl_ 4dyears P8V3.txt}

selection: {evtype: 8, zmax:

— model: {isodiff: isot: i C
selection: {evtype:

- model: {isodiff: is
selection: {evtype:

16,

8 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

Creating an Analysis Script

Once the configuration file has been composed, the analysis is executed by creating an instance of GTAnalysis with
the configuration file as its argument and calling its analysis methods. GTAnalysis serves as a wrapper over the
underlying pyLikelihood classes and provides methods to fix/free parameters, add/remove sources from the model,
and perform a fit to the ROI. For a complete documentation of the available methods you can refer to the fermipy
package page.

In the following python examples we show how to initialize and run a basic analysis of a source. First we instantiate a
GTAnalysis object with the path to the configuration file and run setup ().

from fermipy.gtanalysis import GTAnalysis

gta = GTAnalysis('config.yaml',logging={'verbosity' : 3})
gta.setup()

The setup () method performs the data preparation and response calculations needed for the analysis (selecting the
data, creating counts and exposure maps, etc.). Depending on the data selection and binning of the analysis this will
often be the slowest step in the analysis sequence. The output of setup () is cached in the analysis working directory
so subsequent calls to setup () will run much faster.

Before running any other analysis methods it is recommended to first run optimize ():

gta.optimize ()

This will loop over all model components in the ROI and fit their normalization and spectral shape parameters. This
method also computes the TS of all sources which can be useful for identifying weak sources that could be fixed or
removed from the model. We can check the results of the optimization step by calling print_roi ():

gta.print_roi ()

By default all models parameters are initially fixed. The free source () and free_ sources () methods can
be use to free or fix parameters of the model. In the following example we free the normalization of catalog sources
within 3 deg of the ROI center and free the galactic and isotropic components by name.

Free Normalization of all Sources within 3 deg of ROI center
gta.free_sources (distance=3.0,pars="'norm")

Free all parameters of isotropic and galactic diffuse components
gta.free_source('galdiff")
gta.free_source('isodiff")

The minmax_ts and minmax_npred arguments to free_sources () can be used to free or fixed sources on
the basis of their current TS or Npred values:

Free sources with TS > 10
gta.free_sources (minmax_ts=[10,None],pars="norm')

Fix sources with TS < 10
gta.free_sources (minmax_ts=[None, 10], free=False,pars="norm')

Fix sources with 10 < Npred < 100
gta.free_sources (minmax_npred=[10,100], free=False,pars="norm')

When passing a source name argument both case and whitespace are ignored. When using a FITS catalog file a source
can also be referred to by any of its associations. When using the 3FGL catalog, the following calls are equivalent
ways of freeing the parameters of Mkn 421:

1.3. Documentation Contents 9

Fermipy Documentation, Release 0.19.0+dirty

These calls are equivalent

gta.free_source ('mkn421")

gta.free_source('Mkn 421")

gta.free_source ('3FGL J1104.4+3812")
(

gta.free_source ('3fglj1104.4+3812")

After freeing parameters of the model we can execute a fit by calling 71 ¢ (). The will maximize the likelihood with
respect to the model parameters that are currently free.

’gta.fit()

After the fitting is complete we can write the current state of the model with write roi:

’gta.write_roi('fit_model')

This will write several output files including an XML model file and an ROI dictionary file. The names of all output
files will be prepended with the prefix argumentto write roi ().

Once we have optimized our model for the ROI we can use the residmap () and tsmap () methods to assess the
fit quality and look for new sources.

Dictionary defining the spatial/spectral parameters of the test source
model = {'SpatialModel' : 'PointSource', 'Index' : 2.0,
'SpectrumType' : 'PowerLaw'}

Both methods return a dictionary with the maps
m0 = gta.residmap('fit_model', model=model, make_plots=True)
ml = gta.tsmap('fit_model', model=model, make_plots=True)

More documentation on these methods is available in the 7'S Map and Residual Map pages.

By default, calls to £it () will execute a global spectral fit over the entire energy range of the analysis. To extract a
bin-by-bin flux spectrum (i.e. a SED) you can call sed () method with the name of the source:

gta.sed('mkn421"', make_plots=True)

More information about sed () method can be found in the SED Analysis page.

Extracting Analysis Results

Results of the analysis can be extracted from the dictionary file written by write_roi (). This method writes
information about the current state of the analysis to a python dictionary. More documentation on the contents of the
output file are available in the Output File page.

By default the output dictionary is written to a file in the numpy format and can be loaded from a python session
after your analysis is complete. The following demonstrates how to load the analysis dictionary that was written to
fit_model.npy in the Mkn421 analysis example:

>>> # Load analysis dictionary from a npy file
>>> import np

>>> ¢ = np.load('fit_model.npy').flat[0]

>>> list (c.keys())

['roi', 'config', 'sources', 'version']

The output dictionary contains the following top-level elements:

10 Chapter 1. Introduction

http://docs.scipy.org/doc/numpy/neps/npy-format.html

Fermipy Documentation, Release 0.19.0+dirty

Table 1: File Dictionary

Key Description

roi dict A dictionary containing information about the ROI as a whole.

sources dict A dictionary containing information about individual sources in the model (diffuse and
point-like). Each element of this dictionary maps to a single source in the ROI model.

config | dict The configuration dictionary of the GTAnalysis instance.

versiorn str The version of the Fermipy package that was used to run the analysis. This is automatically
generated from the git release tag.

Each source dictionary collects the properties of the given source (TS, NPred, best-fit parameters, etc.) computed up
to that point in the analysis.

>>> list (c['sources'].keys())
["3FGL J1032.7+3735",
'3FGL J1033.2+4116",

'3FGL J1145.8+4425",

'galdiff"',

'isodiff']

>>> c['sources']['3FGL J1104.4+3812']['"ts"']
87455.9709683

>>> c['sources']['3FGL J1104.4+3812"'] ['npred']

31583.7166495

Information about individual sources in the ROI is also saved to a catalog FITS file with the same string prefix as the
dictionary file. This file can be loaded with the astropy.io.fits orastropy.table.Table interface:

>>> # Load the source catalog file

>>> from astropy.table import Table

>>> tab = Table.read('fit_model.fits")

>>> tab[['name', 'class', "ts', 'npred', "flux']]

name class ts npred flux [2]
1 / (cm2 s)
3FGL J1104.4+3812 BLL 87455.9709683 31583.7166495 2.20746290445e-07 .. 1.
—67062058528e-09
3FGL J1109.6+3734 bll 42.34511826 93.7971922425 5.90635786943e-10 .. 3.

—~6620894143e-10

3FGL J1136.4+3405 fsrg 4.78089819776 261.427034151 1.86805869704e-08 .. 8.

—~62638727067e-09
3FGL J1145.8+4425 fsrqg 3.78006883967 237.525501441 7.25611442299e-08 .. 3.

—77056557247e-08

The FITS file contains columns for all scalar and vector elements of the source dictionary. Spectral fit parameters are
contained in the param_names, param_values, and param_errors columns:

>>> tab[['param_names', 'param_values', 'param_errors']][0]
<Row 0 of table
values=(['Prefactor', 'Index', 'Scale', '', '', ''],
[2.1301351784512767e-11, -1.7716399431228638, 1187.1300048828125, nan, nan,
—nan],
[1.6126233510314277e-13, nan, nan, nan, nan, nan])
dtype=[('param_names', 'S32', (6,)),

(continues on next page)

1.3. Documentation Contents 11

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
http://docs.astropy.org/en/stable/io/fits/index.html#module-astropy.io.fits
http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

Fermipy Documentation, Release 0.19.0+dirty

(continued from previous page)

('"param_values', '>f8', (6,)),
('param_errors', '>f8', (6,))]1>

Reloading from a Previous State

One can reload an analysis instance that was saved with write roi () by calling either the create () or
load_roi () methods. The create () method can be used to construct an entirely new instance of GTAnalysis
from a previously saved results file:

from fermipy.gtanalysis import GTAnalysis
gta = GTAnalysis.create('fit_model.npy")

Continue running analysis starting from the previously saved
state
gta.fit ()

where the argument is the path to an output file produced with write roi (). This function will instantiate a new
analysis object, run the setup () method, and load the state of the model parameters at the time that write roi ()
was called.

The Ioad roi () method can be used to reload a previous state of the analysis to an existing instance of
GTAnalysis.

from fermipy.gtanalysis import GTAnalysis

gta = GTAnalysis('config.yaml')
gta.setup ()

gta.write_roi ('prefit_model")

Fit a source
gta.free_source ('mkn421")
gta.fit ()

Restore the analysis to its prior state before the fit of mkn42l1
was executed
gta.load_roi('prefit_model")

Using 1oad_roi () is generally faster than create () when an analysis instance already exists.

IPython Notebook Tutorials

Additional tutorials with more detailed examples are available as IPython notebooks in the notebooks directory of the
fermipy-extra respository. These notebooks can be browsed as static web pages or run interactively by downloading
the fermipy-extra repository and running jupyter notebook in the notebooks directory:

$ git clone https://github.com/fermiPy/fermipy-extra.git
$ cd fermipy-extra/notebooks
$ jupyter notebook index.ipynb

Note that this will require you to have both ipython and jupyter installed in your python environment. These can be
installed in a conda- or pip-based installation as follows:

12 Chapter 1. Introduction

https://github.com/fermiPy/fermipy-extra/tree/master/notebooks/
https://github.com/fermiPy/fermipy-extra
http://nbviewer.jupyter.org/github/fermiPy/fermipy-extra/blob/master/notebooks/index.ipynb

Fermipy Documentation, Release 0.19.0+dirty

Install with conda
$ conda install ipython jupyter

Install with pip
$ pip install ipython Jjupyter

One can also run the notebooks from a docker container following the Installing with Docker instructions:

git clone https://github.com/fermiPy/fermipy-extra.git

cd fermipy-extra

docker pull fermipy/fermipy

docker run —-it —--rm -p 8888:8888 —-v SPWD:/workdir -w /workdir fermipy/fermipy

w4 Ay

After launching the notebook server, paste the URL that appears into your web browser and navigate to the notebooks
directory.

1.3.3 Configuration

This page describes the configuration management scheme used within the Fermipy package and documents the con-
figuration parameters that can be set in the configuration file.

Class Configuration

Classes in the Fermipy package own a configuration state dictionary that is initialized when the class instance is
created. Elements of the configuration dictionary can be scalars (str, int, float) or dictionaries containing groups of
parameters. The settings in this dictionary are used to control the runtime behavior of the class.

When creating a class instance, the configuration is initialized by passing either a configuration dictionary or configu-
ration file path to the class constructor. Keyword arguments can be passed to the constructor to override configuration
parameters in the input dictionary. In the following example the config dictionary defines values for the parame-
ters emin and emax. By passing a dictionary for the selection keyword argument, the value of emax in the keyword
argument (10000) overrides the value of emax in the input dictionary.

config = {
'selection' : { 'emin' : 100,
'emax' : 1000 }
}
gta = GTAnalysis(config, selection={'emax' : 10000})

The first argument can also be the path to a YAML configuration file rather than a dictionary:

gta = GTAnalysis('config.yaml',selection={"'emax' : 10000})

Configuration File

Fermipy uses YAML files to read and write its configuration in a persistent format. The configuration file has a
hierarchical structure that groups parameters into dictionaries that are keyed to a section name (data, binning, etc.).

1.3. Documentation Contents 13

http://yaml.org/

Fermipy Documentation, Release 0.19.0+dirty

Listing 1: Sample Configuration

data:
evfile : ftl.lst
scfile : ft2.fits
ltcube : ltcube.fits

binning:
roiwidth : 10.0
binsz : 0.1

binsperdec : 8

selection
emin : 100
emax : 316227.76
zmax : 90
evclass : 128
evtype : 3
tmin : 239557414
tmax : 428903014
filter : null
target : 'mkn421'
gtlike:
edisp : True
edisp_bins : -1
irfs : 'P8R3_SOURCE_V2'
edisp _disable : ['isodiff', 'galdiff']
model:
src_roiwidth : 15.0
galdiff : 'SFERMI_DIFFUSE_DIR/gll_iem_v07.fits'
isodiff : '"iso_ P8R3_SOURCE_V2_vl.txt'
catalogs : ['4FGL']

The configuration file has the same structure as the configuration dictionary such that one can read/write configurations
using the load/dump methods of the yaml module :

import yaml

Load a configuration

config = yaml.load(open('config.yaml'))

Update a parameter and write a new configuration
config['selection']['emin'] = 1000.

yaml.dump (config, open('new_config.yaml','w'))

Most of the configuration parameters are optional and if not set explicitly in the configuration file will be set to a
default value. The parameters that can be set in each section are described below.

binning

Options in the binning section control the spatial and spectral binning of the data.

Listing 2: Sample binning Configuration

binning:

(continues on next page)

14 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

(continued from previous page)

Binning

roiwidth : 10.0

npix : null

binsz : 0.1 # spatial bin size in deg
binsperdec : 8 # nb energy bins per decade
projtype : WCS

Table 2: binning Options

Option | Default | Description

binspendg&c Number of energy bins per decade.

binsz 0.1 Spatial bin size in degrees.

coordsysCEL Coordinate system of the spatial projection (CEL or GAL).

enumbirnsNone Number of energy bins. If none this will be inferred from energy range and binsperdec
parameter.

hpx_ebinTrue Include energy binning

hpx_ordel) Order of the map (int between 0 and 12, included)

hpx_ordeRING_scHEBALPix Ordering Scheme

npix None Number of pixels along the x and y dimension (tuple) for WCS mode. If none then this will
be set from roiwidth and binsz.

proj AIT Spatial projection for WCS mode.

projtypeWCS Projection mode (WCS or HPX).

roiwidghl0.0 Width of the ROI in degrees. The number of pixels in each spatial dimension will be set
from roiwidth /binsz (rounded up) if not specified using npix.

components

The components section can be used to define analysis configurations for independent subselections of the data. Each
subselection will have its own binned likelihood instance that is combined in a global likelihood function for the ROI
(implemented with the SummedLikelihood class in pyLikelihood). The components section is optional and when
set to null (the default) only a single likelihood component will be created with the parameters of the root analysis
configuration.

The component section is defined as a list of dictionaries where each element sets analysis parameters for a different
subcomponent of the analysis. The component configurations follow the same structure and accept the same parame-
ters as the root analysis configuration. Parameters not defined in a given element will default to the values set in the
root analysis configuration.

The following example illustrates how to define a Front/Back analysis with two components. Files associated to each
component will be given a suffix according to their order in the list (e.g. file_00.fits, file_01 fits, etc.).

Component section for Front/Back analysis
- { selection : { evtype : 1 } } # Front
- { selection : { evtype : 2 } } # Back

data

The data section defines the input data files for the analysis (FT1, FT2, and livetime cube). evfile and scfile
can either be individual files or group of files. The optional 1t cube option can be used to choose a pre-generated
livetime cube. If 1t cube is null a livetime cube will be generated at runtime with gt 1t cube.

1.3. Documentation Contents 15

Fermipy Documentation, Release 0.19.0+dirty

Listing 3: Sample data Configuration

data :
evfile : ftl.lst
scfile : ft2.fits
ltcube : null

Table 3: data Options

Option | Default | Description
cacheftl1True Cache FT1 files when performing binned analysis. If false then only the counts cube is
retained.
evifile | None Path to FT1 file or list of FT1 files.
ltcube | None Path to livetime cube. If none a livetime cube will be generated with gtmkt ime.
scfile | None Path to FT2 (spacecraft) file.
extension

The options in extension control the default behavior of the extension method. For more information about using
this method see the Extension Fitting page.

16 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

Table 4: extension Options

Option | Default | Description

fit_ebinFalse Perform a fit for the angular extension in each analysis energy bin.
fit_pogikalsen Perform a simultaneous fit to the source position and extension.
fix_shagpEalse Fix spectral shape parameters of the source of interest. If True then only the normalization

parameter will be fit.
free_bgcKajssound Leave background parameters free when performing the fit. If True then any parameters
that are currently free in the model will be fit simultaneously with the source of interest.

free_rgd¥ame Free normalizations of background sources within this angular distance in degrees from the
source of interest. If None then no sources will be freed.

make_ploEadse Generate diagnostic plots.

make_t gnbme Make a TS map for the source of interest.

psf_scglNormn Tuple of two vectors (logE,f) defining an energy-dependent PSF scaling function that will
be applied when building spatial models for the source of interest. The tuple (logE.f) de-
fines the fractional corrections f at the sequence of energies logE = logl0(E/MeV) where
f=0 corresponds to no correction. The correction function f(E) is evaluated by linearly inter-
polating the fractional correction factors f in log(E). The corrected PSF is given by P’(x;E)
= P(x/(1+f(E));E) where x is the angular separation.

save_mqdEdlsenap | Save model counts cubes for the best-fit model of extension.
spatial_RadialGausSpatial model that will be used to test the sourceextension. The spatial scale parameter of
the model will be set such that the 68% containment radius of the model is equal to the
width parameter.

sgrt_tg_NbneshaolFhreshold on sqrt(TS_ext) that will be applied when update is True. If None then

nothreshold is applied.

tsmap_fitsmap Set the method for generating the TS map. Valid options are tsmap or tscube.

update | False Update this source with the best-fit model for spatial extension if TS_ext >
tsext_threshold.

width | None Sequence of values in degrees for the likelihood scan over spatial extension (68% con-

tainment radius). If this argument is None then the scan points will be determined from
width_min/width_max/width_nstep.

width_nak0 Maximum value in degrees for the likelihood scan over spatial extent.
width_mi@01 Minimum value in degrees for the likelihood scan over spatial extent.
width_nsZkp Number of scan points between width_min and width_max. Scan points will be spaced
evenly on a logarithmic scale between width_min and width_max.
write_fliTme Write the output to a FITS file.
write_nplrue Write the output dictionary to a numpy file.
fileio

The fileio section collects options related to file bookkeeping. The outdir option sets the root directory of the anal-
ysis instance where all output files will be written. If outdir is null then the output directory will be automatically
set to the directory in which the configuration file is located. Enabling the usescratch option will stage all output
data files to a temporary scratch directory created under scratchdir.

Listing 4: Sample fileio Configuration

fileio:
outdir : null
logfile : null
usescratch : False
scratchdir : '/scratch'

1.3. Documentation Contents 17

Fermipy Documentation, Release 0.19.0+dirty

Table 5: fileio Options

Option | Default | Description

logfilg None Path to log file. If None then log will be written to fermipy.log.

outdir | None Path of the output directory. If none this will default to the directory containing the config-
uration file.

outdir_|rigdisS.fithl Stad8s| ey KoptheSbpafitt. dimed Sty that match at least one of the regular expressions in this
list. This option only takes effect when usescratch is True.

savefitsTrue Save intermediate FITS files.

scratchdieratch | Path to the scratch directory. If usescratch is True then a temporary working directory
will be created under this directory.

usescrgtkdlse Run analysis in a temporary working directory under scratchdir.

workdiy None Path to the working directory.

workdin_[FdieeSkfithl Stad$|filpy $0] the working directory that match at least one of the regular expressions in this
list. This option only takes effect when usescratch is True.

gtlike

Options in the gtlike section control the setup of the likelihood analysis include the IRF name (irfs). The
edisp_bin option has been recently added to implement the latest handling of the energy dispersion (see FSSC
for further details).

Table 6: gtlike Options

Option | Default | Description

bexpmapg None

bexpmap_Nemse Set the basline all-sky expoure map file. This will be used to generate a scaled source map.

bexpmapg_Nore

bexpmag Nore bageSet the basline ROI expoure map file. This will be used to generate a scaled source map.

convolveTrue

edisp | True Enable the correction for energy dispersion.

edisp_hidls Number of bins to use for energy correction.

edisp_diNahel e Provide a list of sources for which the edisp correction should be disabled.

expscaleNone Exposure correction that is applied to all sources in the analysis component. This correction
is superseded by src_expscale if it is defined for a source.

irfs None Set the IRF string.

llscan_ |ns Number of evaluation points to use when performing a likelihood scan.

minbingz0.05 Set the minimum bin size used for resampling diffuse maps.

resamplieTrue

rfacton 2

src_expsNede Dictionary of exposure corrections for individual sources keyed to source name. The ex-
posure for a given source will be scaled by this value. A value of 1.0 corresponds to the
nominal exposure.

srcmap | None Set the source maps file. When defined this file will be used instead of the local source
maps file.

srcmap_|bNere Set the baseline source maps file. This will be used to generate a scaled source map.

use_extelalsel s rddsean external precomputed source map file.

use_scglBalses rcmaenerate source map by scaling an external srcmap file.

wmap None Likelihood weights map.

18 Chapter 1. Introduction

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8_edisp_usage.html

Fermipy Documentation, Release 0.19.0+dirty

lightcurve

The options in lightcurve control the default behavior of the 1 i ght curve method. For more information about using
this method see the Light Curves page.

Table 7: lightcurve Options

Option | Default | Description

binsz 86400.0 | Set the lightcurve bin size in seconds.

free_bgcKajssound Leave background parameters free when performing the fit. If True then any parameters
that are currently free in the model will be fit simultaneously with the source of interest.

free_pgriNome Set the parameters of the source of interest that will be re-fit in each time bin. If this list is
empty then all parameters will be freed.

free_rgd¥omse Free normalizations of background sources within this angular distance in degrees from the
source of interest. If None then no sources will be freed.

free_squlNomes List of sources to be freed. These sources will be added to the list of sources satisfying the
free_radius selection.

make_plokEadse Generate diagnostic plots.

max_freged sourcedMaximum number of sources that will be fit simultaneously with the source of interest.

multithrEdse Split the calculation across number of processes set by nthread option.

nbins | None Set the number of lightcurve bins. The total time range will be evenly split into this number
of time bins.

nthread None Number of processes to create when multithread is True. If None then one process will be
created for each available core.

outdir | None Store all data in this directory (e.g. “30days”). If None then use current directory.

save_binTmeata | Save analysis directories for individual time bins. If False then only the analysis results
table will be saved.

shape_tsl@breshSef the TS threshold at which shape parameters of sources will be freed. If a source is
detected with TS less than this value then its shape parameters will be fixed to values derived
from the analysis of the full time range.

systemgt.62 Systematic correction factor for TS:subscript:var. See Sect. 3.6 in 2FGL for details.
time_binNone Set the lightcurve bin edge sequence in MET. This option takes precedence over binsz and
nbins.

use_loaqgaTruét culpeGenerate a fast LT cube.
use_scglEases r cma@enerate approximate source maps for each time bin by scaling the current source maps by
the exposure ratio with respect to that time bin.

write_fiiTtme Write the output to a FITS file.
write_nplrue Write the output dictionary to a numpy file.
model

The model section collects options that control the inclusion of point-source and diffuse components in the model.
galdiff and isodiff set the templates for the Galactic IEM and isotropic diffuse respectively. catalogs
defines a list of catalogs that will be merged to form a master analysis catalog from which sources will be drawn.
Valid entries in this list can be FITS files or XML model files. sources can be used to insert additional point-source
or extended components beyond those defined in the master catalog. src_radius and src_roiwidth set the
maximum distance from the ROI center at which sources in the master catalog will be included in the ROI model.

Listing 5: Sample model Configuration

model

(continues on next page)

1.3. Documentation Contents 19

Fermipy Documentation, Release 0.19.0+dirty

(continued from previous page)

Diffuse components
galdiff : 'SFERMI_DIR/refdata/fermi/galdiffuse/gll_iem v06.fits'
isodiff : 'SFERMI_DIR/refdata/fermi/galdiffuse/iso_P8R2_SOURCE_V6_v06.txt'

List of catalogs to be used in the model.
catalogs

- '"3FGL'

— 'extra_sources.xml'

sources
- { 'mame' : 'SourceA', 'ra' 'dec’ 0.0, 'SpectrumType' : P« }
- { 'name' : 'SourceB', 'ra' 'dec' : 35.0, 'SpectrumType' : Pc }

Include catalog sources within this distance from the ROI center
src_radius : null

Include catalog sources within a box of width roisrc.
src_roiwidth : 15.0

Table 8: model Options

Option | Default | Description

assoc_xnmd3FEL Naiedpse a set of association columns on which to cross-match catalogs.
catalogsNone
diffusg None
diffuseg_Nane
diffusg Nwmie
extdir | None Set a directory that will be searched for extended source FITS templates. Template files in
this directory will take precendence over catalog source templates with the same name.
extract_balfefuse Extract a copy of all mapcube components centered on the ROL.

galdiff None Set the path to one or more galactic [EM mapcubes. A separate component will be generated
for each item in this list.
isodiffi None Set the path to one or more isotropic templates. A separate component will be generated

for each item in this list.

limbdi fifNone
merge_golimees | Merge properties of sources that appear in multiple source catalogs. If merge_sources=false
then subsequent sources with the same name will be ignored.

sourceg None
src_radiNene Radius of circular region in degrees centered on the ROI that selects sources for inclusion
in the model. If this parameter is none then no selection is applied. This selection is ORed
with the src_roiwidth selection.

src_radiNeneroi | Half-width of src_roiwidth selection. This parameter can be used in lieu of
src_roiwidth.

src_roiwNdmth Width of square region in degrees centered on the ROI that selects sources for inclusion
in the model. If this parameter is none then no selection is applied. This selection will be
ORed with the src_radius selection.

20 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

optimizer
Table 9: optimizer Options
Option | Default | Description
init_1gmkh6601 Initial value of damping parameter for step size calculation when using the NEWTON fitter.
A value of zero disables damping.
max_1itgrl00 Maximum number of iterations for the Newtons method fitter.
min_fiy Zuality Set the minimum fit quality.
optimiZgeMINUIT | Set the optimization algorithm to use when maximizing the likelihood function.
retrieq 3 Set the number of times to retry the fit when the fit quality is less than
min_fit_quality.
tol 0.001 Set the optimizer tolerance.
verbosilte
plotting
Table 10: plotting Options
Option | Default | Description
catalogsNone
cmap magma | Set the colormap for 2D plots.
cmap_rgsRdBu_r | Set the colormap for 2D residual plots.
figsizg [8.0, Set the default figure size.
6.0]
format | png
graticylNomeadii Define a list of radii at which circular graticules will be drawn.
interaqtHalee Enable interactive mode. If True then plots will be drawn after each plotting command.
label_ys0.0hreshdlSithreshold for labeling sources in sky maps. If None then no sources will be labeled.
loge_bgulNase
residmap

The options in residmap control the default behavior of the residmap method. For more information about using
this method see the Residual Map page.

Table 11: residmap Options

Option | Default | Description

excludg None List of sources that will be removed from the model when computing the residual map.

loge_bguNadse Restrict the analysis to an energy range (emin,emax) in loglO(E/MeV) that is a subset of
the analysis energy range. By default the full analysis energy range will be used. If either
emin/emax are None then only an upper/lower bound on the energy range wil be applied.

make_ploEase Generate diagnostic plots.

model None Dictionary defining the spatial/spectral properties of the test source. If model is None the
test source will be a PointSource with an Index 2 power-law spectrum.

use_welghdse Used weighted version of maps in making plots.

write fliTrme Write the output to a FITS file.

write_nplrue Write the output dictionary to a numpy file.

1.3. Documentation Contents 21

Fermipy Documentation, Release 0.19.0+dirty

roiopt

The options in roiopt control the default behavior of the opt imi ze method. For more information about using this
method see the ROI Optimization and Fitting page.

Table 12: roiopt Options

Option | Default | Description

max_frged sourcedMaximum number of sources that will be fit simultaneously in the first optimization step.
npred_ fir@85
npred_tghk8shold
shape_ts2%0 reshdlkdeshold on source TS used for determining the sources that will be fit in the third opti-
mization step.

skip None List of str source names to skip while optimizing.

sed

The options in sed control the default behavior of the sed method. For more information about using this method see
the SED Analysis page.

Table 13: sed Options

Option | Default | Description

bin_index0 Spectral index that will be use when fitting the energy distribution within an energy bin.
cov_scgdla0 Scale factor that sets the strength of the prior on nuisance parameters that are free. Setting
this to None disables the prior.

free_bgckaseound Leave background parameters free when performing the fit. If True then any parameters
that are currently free in the model will be fit simultaneously with the source of interest.

free_pgrNone Set the parameters of the source of interest that will be freed when performing the global
fit. By default all parameters will be freed.

free_rgd¥ome Free normalizations of background sources within this angular distance in degrees from the
source of interest. If None then no sources will be freed.

make_plokase Generate diagnostic plots.

ul_confiid8hce | Confidence level for flux upper limit.
use_loqgaHalsendex Use a power-law approximation to the shape of the global spectrum in each bin. If this is
false then a constant index set to bin_index will be used.

write_fiiTtme Write the output to a FITS file.
write_nplrue Write the output dictionary to a numpy file.
selection

The selection section collects parameters related to the data selection and target definition. The majority of the param-
eters in this section are arguments to gtselect and gtmktime. The ROI center can be set with the farget parameter by
providing the name of a source defined in one of the input catalogs (defined in the model section). Alternatively the
ROI center can be defined by giving explicit sky coordinates with ra and dec or glon and glat.

selection:

gtselect parameters

emin : 100
emax : 100000
zZmax : 90

(continues on next page)

22 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

(continued from previous page)

evclass : 128
evtype : 3

tmin : 239557414
tmax : 428903014

gtmktime parameters
filter : 'DATA_QUAL>0 && LAT_CONFIG==1'
roicut : 'no'

Set the ROI center to the coordinates of this source
target : 'mkn421'

Table 14: selection Options

Option | Default | Description

convtygeNone Conversion type selection.

dec None

emax None Maximum Energy (MeV)

emin None Minimum Energy (MeV)

evclasg None Event class selection.

evtype | None Event type selection.

filter | None Filter string for gt mkt ime selection.

glat None
glon None
logemax None Maximum Energy (log10(MeV))
logemiri None Minimum Energy (logl0(MeV))

phasemgxNone Maximum pulsar phase
phaseminNone Minimum pulsar phase
ra None
radius | None Radius of data selection. If none this will be automatically set from the ROI size.
roicut | no
target | None Choose an object on which to center the ROI. This option takes precendence over ra/dec or
glon/glat.
tmax None Maximum time (MET).
tmin None Minimum time (MET).
zmax None Maximum zenith angle.
sourcefind

The options in sourcefind control the default behavior of the find sources method. For more information about
using this method see the Source Finding page.

1.3. Documentation Contents 23

Fermipy Documentation, Release 0.19.0+dirty

Table 15: sourcefind Options

Option | Default | Description
free_pgrNmse
max_itgrS Maximum number of source finding iterations. The source finder will continue adding
sources until no additional peaks are found or the number of iterations exceeds this number.
min_sepakBtion | Minimum separation in degrees between sources detected in each iteration. The source
finder will look for the maximum peak in the TS map within a circular region of this radius.

model | None Dictionary defining the spatial/spectral properties of the test source. If model is None the
test source will be a PointSource with an Index 2 power-law spectrum.

multithrEdse Split the calculation across number of processes set by nthread option.

nthread None Number of processes to create when multithread is True. If None then one process will be

created for each available core.

sourcesg_der_1iterMaximum number of sources that will be added in each iteration. If the number of detected
peaks in a given iteration is larger than this number, only the N peaks with the largest TS
will be used as seeds for the current iteration.

sqgrt_tg_FHAreshaolSburce threshold in sqrt(TS). Only peaks with sqrt(TS) exceeding this threshold will be
used as seeds for new sources.

tsmap_ fiitstmap Set the method for generating the TS map. Valid options are tsmap or tscube.

tsmap

The options in tsmap control the default behavior of the ¢ smap method. For more information about using this method
see the 7'S Map page.

Table 16: tsmap Options

Option | Default | Description

excludg None List of sources that will be removed from the model when computing the TS map.
loge_bquNase Restrict the analysis to an energy range (emin,emax) in logl0(E/MeV) that is a subset of
the analysis energy range. By default the full analysis energy range will be used. If either
emin/emax are None then only an upper/lower bound on the energy range wil be applied.
make_plokEadse Generate diagnostic plots.

max_kenn&0_radiuSet the maximum radius of the test source kernel. Using a smaller value will speed up the
TS calculation at the loss of accuracy.

model | None Dictionary defining the spatial/spectral properties of the test source. If model is None the
test source will be a PointSource with an Index 2 power-law spectrum.

multithrEdse Split the calculation across number of processes set by nthread option.

nthread None Number of processes to create when multithread is True. If None then one process will be
created for each available core.

write fliTrme Write the output to a FITS file.

write_nplrue Write the output dictionary to a numpy file.

tscube

The options in tscube control the default behavior of the tscube method. For more information about using this
method see the 7'S Cube page.

24 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

Table 17: tscube Options

Option | Default | Description

cov_scgdld.0 Scale factor to apply to broadband fitting cov. matrix in bin-by-bin fits (< 0 -> fixed)

cov_scdld.bb Scale factor to apply to global fitting cov. matrix in broadband fits. (< 0 -> no prior)

do_sed | True Compute the energy bin-by-bin fits

exclude None List of sources that will be removed from the model when computing the TS map.

init_lgnmbda Initial value of damping parameter for newton step size calculation. A value of zero disables
damping.

max_1itdr30 Maximum number of iterations for the Newtons method fitter.

model None Dictionary defining the spatial/spectral properties of the test source. If model is None the
test source will be a PointSource with an Index 2 power-law spectrum.

nnorm | 10 Number of points in the likelihood v. normalization scan

norm_sigh@ Number of sigma to use for the scan range

remake_|tEd$e soudféue, recomputes the test source image (otherwise just shifts it)

st_scar_Qevel Level to which to do ST-based fitting (for testing)

tol 0.001 Critetia for fit convergence (estimated vertical distance to min < tol)

tol_typel Absoulte (0) or relative (1) criteria for convergence.

1.3.4 Output File

The current state of the ROI can be written at any point by calling write roi.

>>> gta.write_roi ('output.npy')

The output file will contain all information about the state of the ROI as calculated up to that point in the analysis
including model parameters and measured source characteristics (flux, TS, NPred). An XML model file will also be
saved for each analysis component.

The output file can be read with 1oad:

>>> o = np.load('output.npy').flat[0]
>>> print (o.keys())
['roi', 'config', 'sources', 'version']

The output file is organized in four top-level of dictionaries:

Table 18: File Dictionary

Key Type Description

roi dict A dictionary containing information about the ROI as a whole.

sources dict A dictionary containing information about individual sources in the model (diffuse and
point-like). Each element of this dictionary maps to a single source in the ROI model.

config | dict The configuration dictionary of the GTAnalysis instance.

versiorn str The version of the Fermipy package that was used to run the analysis. This is automatically
generated from the git release tag.

ROI Dictionary
Source Dictionary

The sources dictionary contains one element per source keyed to the source name. The following table lists the
elements of the source dictionary and their descriptions.

1.3. Documentation Contents 25

https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Fermipy Documentation, Release 0.19.0+dirty

Table 19: Source Dictionary

Key Type Description

name str Name of the source.

Source_|Name Name of the source.

SpatialMedel Spatial model.

SpatialWidsht Spatial size parameter.

SpatiallType Spatial type string. This corresponds to the type attribute of the spatialModel component in
the XML model.

SourceTyper Source type string (PointSource or DiffuseSource).

SpectrymIype Spectrum type string. This corresponds to the type attribute of the spectrum component in
the XML model (e.g. PowerLaw, LogParabola, etc.).

Spatiall FtitenamePath to spatial template associated to this source.

SpectrymsFu lenanRath to file associated to the spectral model of this source.

correldtdont Dictionary of correlation coefficients.

model_gomadsray Vector of predicted counts for this source in each analysis energy bin.

model_gomad&sraf Vector of predicted counts for this source in each analysis energy bin.

sed dict Output of SED analysis. See SED Analysis for more information.

ra float Right ascension of the source (deg).

dec float Declination of the source (deg).

glon float Galactic longitude of the source (deg).

glat float Galactic latitude of the source (deg).

ra_err | float Std. deviation of positional uncertainty in right ascension (deg).

dec_ery float Std. deviation of positional uncertainty in declination (deg).

glon_enrfloat Std. deviation of positional uncertainty in galactic longitude (deg).

glat_ernrfloat Std. deviation of positional uncertainty in galactic latitude (deg).

pos_ern float 1-sigma positional uncertainty (deg).

pos_r6§ float 68% positional uncertainty (deg).

pos_r99 float | 95% positional uncertainty (deg).

pos_r99 float 99% positional uncertainty (deg).

pos_ern_Eéwmdna jokesigma uncertainty (deg) along major axis of uncertainty ellipse.

pos_ery_Séemdminokesigma uncertainty (deg) along minor axis of uncertainty ellipse.

pos_angléloat | Position angle of uncertainty ellipse with respect to major axis.

pos_gal _wrdwrray Covariance matrix of positional uncertainties in local projection in galactic coordinates.

pos_gal_xodarray Correlation matrix of positional uncertainties in local projection in galactic coordinates.

pos_cel rodwrray Covariance matrix of positional uncertainties in local projection in celestial coordinates.

pos_cel _xadarray Correlation matrix of positional uncertainties in local projection in celestial coordinates.

offset_|rAloat Right ascension offset from ROI center in local celestial projection (deg).

offset_|détoat | Declination offset from ROI center in local celestial projection (deg).

offset_|gibnat Galactic longitude offset from ROI center in local galactic projection (deg).

offset_|gifatat Galactic latitude offset from ROI center in local galactic projection (deg).

offset_|rbioedge Distance from the edge of the ROI (deg). Negative (positive) values indicate locations inside
(outside) the ROL.

offset | float Angular offset from ROI center (deg).

param_ramesrray Names of spectral parameters.

param_vaiddesray Spectral parameter values.

param_grroasray Spectral parameters errors.

ts float Source test statistic.

loglikg float | Log-likelihood of the model evaluated at the best-fit normalization of the source.

loglikeg_isdanrayl Log-likelihood values for scan of source normalization.

dloglikengernay Delta Log-likelihood values for scan of source normalization.

Continued on next page
26 Chapter 1. Introduction

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Fermipy Documentation, Release 0.19.0+dirty

Table 19 — continued from previous page

Key Type Description

eflux_gcadarray Energy flux values for scan of source normalization.

flux_sqgamndarray Flux values for scan of source normalization.

norm_sdandarrayl Normalization parameters values for scan of source normalization.

npred float Number of predicted counts from this source integrated over the analysis energy range.

npred_wtfloat | Number of predicted counts from this source integrated over the analysis energy range.

pivot_gnétrgyt Decorrelation energy in MeV.

flux float | Photon flux (cm~2 s~1) integrated over analysis energy range

flux10(J float | Photon flux (cm~2 s~ ') integrated from 100 MeV to 316 GeV.

flux10g0float | Photon flux (cm~2 s~1) integrated from 1 GeV to 316 GeV.

flux10g0Dloat | Photon flux (cm~2 s~!) integrated from 10 GeV to 316 GeV.

flux_edrfloat | Photon flux uncertainty (cm~2 s~!) integrated over analysis energy range

flux10(Q_&rmat Photon flux uncertainty (cm~2 s~ 1) integrated from 100 MeV to 316 GeV.

flux10qOfeaat | Photon flux uncertainty (cm~2 s~!) integrated from 1 GeV to 316 GeV.

flux10g00leatr | Photon flux uncertainty (cm~2 s~!) integrated from 10 GeV to 316 GeV.

flux_ull96loat | 95% CL upper limit on the photon flux (cm~2 s~!) integrated over analysis energy range

flux100_fHlost 95% CL upper limit on the photon flux (cm ™2 s~ 1) integrated from 100 MeV to 316 GeV.

f1ux10g0£1d&5 | 95% CL upper limit on the photon flux (cm~=2 s~ 1) integrated from 1 GeV to 316 GeV.

f1ux100091wd®5 | 95% CL upper limit on the photon flux (cm ™2 s~ 1) integrated from 10 GeV to 316 GeV.

eflux | float | Energy flux (MeV cm~2 s~ 1) integrated over analysis energy range

eflux1(0float | Energy flux (MeV cm~2 s~ ') integrated from 100 MeV to 316 GeV.

eflux1(0Bfloat | Energy flux (MeV cm~2 s~ !) integrated from 1 GeV to 316 GeV.

eflux1(08Doat | Energy flux (MeV cm™2 s~ !) integrated from 10 GeV to 316 GeV.

eflux_grfrloat Energy flux uncertainty (MeV cm~2 s~ 1) integrated over analysis energy range

efluxl1(Ofexat | Energy flux uncertainty (MeV cm~2 s~1) integrated from 100 MeV to 316 GeV.

eflux1(0flextr | Energy flux uncertainty (MeV cm~2 s~ 1) integrated from 1 GeV to 316 GeV.

eflux1(0fDoetrr | Energy flux uncertainty (MeV cm~2 s~ 1) integrated from 10 GeV to 316 GeV.

eflux_yl8Boat | 95% CL upper limit on the energy flux (MeV cm~2 s~ 1) integrated over analysis energy
range

eflux1(0£i1d®5 | 95% CL upper limit on the energy flux (MeV cm~2 s~ 1) integrated from 100 MeV to 316
GeV.

eflux1(001md®95 | 95% CL upper limit on the energy flux (MeV cm ™2 s~ 1) integrated from 1 GeV to 316
GeV.

eflux1(00Doail 9% 95% CL upper limit on the energy flux (MeV cm~2 s~1) integrated from 10 GeV to 316
GeV.

dnde float Differential photon flux (cm~2 s~ MeV ') evaluated at the pivot energy.

dndel0(float Differential photon flux (cm~2 s~ MeV ™ ') evaluated at 100 MeV.

dnde10(q0float | Differential photon flux (cm =2 s~! MeV ') evaluated at 1 GeV.

dnde10q00loat | Differential photon flux (cm~2 s~! MeV ') evaluated at 10 GeV.

dnde_enrfloat Differential photon flux uncertainty (cm~2 s~' MeV ') evaluated at the pivot energy.

dnde10(_&rmat | Differential photon flux uncertainty (cm—2 s~ MeV ') evaluated at 100 MeV.

dndel10(0fexat | Differential photon flux uncertainty (cm~2 s~! MeV ™~ ') evaluated at 1 GeV.

dnde10(q0fLexr | Differential photon flux uncertainty (cm~2 s~ MeV ') evaluated at 10 GeV.

dnde_indékoat | Logarithmic slope of the differential photon spectrum evaluated at the pivot energy.

dndel0(_findetx | Logarithmic slope of the differential photon spectrum evaluated at 100 MeV.

dndel0(0findex | Logarithmic slope of the differential photon spectrum evaluated evaluated at 1 GeV.

dndel0(q00laadex Logarithmic slope of the differential photon spectrum evaluated at 10 GeV.

1.3. Documentation Contents

27

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fermipy Documentation, Release 0.19.0+dirty

1.3.5 ROI Optimization and Fitting

Source fitting with fermipy is generally performed with the opt imize and it methods.

Fitting

fit is a wrapper on the pyLikelihood fit method and performs a likelihood fit of all free parameters of the model.
This method can be used to manually optimize of the model by calling it after freeing one or more source parameters.
The following example demonstrates the commands that would be used to fit the normalizations of all sources within
3 deg of the ROI center:

>>> gta.free_sources (distance=2.0,pars="norm'")
>>> gta.print_params (True)
idx parname value error min max scale free

3FGL J1104.4+3812

18 Prefactor 1.77 0 le-05 100 le-11 *
3FGL J1109.6+3734

24 Prefactor 0.33 0 le-05 100 le-14 *
galdiff

52 Prefactor 1 0 0.1 10 1 *
isodiff

55 Normalization 1 0 0.001 le+03 1 *
>>> o = gta.fit ()
2016-04-19 14:07:55 INFO GTAnalysis.fit () : Starting fit.
2016-04-19 14:08:56 INFO GTAnalysis.fit (): Fit returned successfully.
2016-04-19 14:08:56 INFO GTAnalysis.fit (): Fit Quality: 3 LogLike: =77279.869_,
—DeltaLogLike: 501.128
>>> gta.print_params (True)
2016-04-19 14:10:02 INFO GTAnalysis.print_params () :

idx parname value error min max scale free

3FGL J1104.4+3812

18 Prefactor 2.13 0.0161 le-05 100 le-11 *
3FGL J1109.6+3734

24 Prefactor 0.342 0.0904 le-05 100 le-14 *
galdiff

52 Prefactor 0.897 0.0231 0.1 10 1 *
isodiff

55 Normalization 1.15 0.016 0.001 le+03 1 *

By default 71t will repeat the fit until a fit quality of 3 is obtained. After the fit returns all sources with free parameters
will have their properties (flux, TS, NPred, etc.) updated in the ROIModel instance. The return value of the method
is a dictionary containing the following diagnostic information about the fit:

28 Chapter 1. Introduction

Fermipy Documentation, Release 0.19.0+dirty

Table 20: fit Output Dictionary

Key Type Description

fit_qugliity Fit quality parameter for MINUIT and NEWMINUIT optimizers (3 - Full accurate covari-
ance matrix, 2 - Full matrix, but forced positive-definite (i.e. not accurate), 1 - Diagonal
approximation only, not accurate, 0 - Error matrix not calculated at all)

errors | ndarray Vector of parameter errors (unscaled).

loglikg float Post-fit log-likehood value.

correldtridarray Correlation matrix between free parameters of the fit.

config | dict Copy of input configuration to this method.

values | ndarray Vector of best-fit parameter values (unscaled).

dloglikefloat Improvement in log-likehood value.

fit_stgtmns Optimizer return code (0 = ok).
covarigneearrayl Covariance matrix between free parameters of the fit.
edm float | Estimated distance to maximum of log-likelihood function.

The £t also accepts keyword arguments which can be used to configure its behavior at runtime:

>>> o = gta.fit (min_fit_quality=2, optimizer="NEWMINUIT', reoptimize=True)

Reference/API

GTAnalysis. fit (update=True, **kwargs)
Run the likelihood optimization. This will execute a fit of all parameters that are currently free in the model and
update the charateristics of the corresponding model components (TS, npred, etc.). The fit will be repeated N
times (set with the retries parameter) until a fit quality greater than or equal to min_fit_quality and
a fit status code of 0 is obtained. If the fit does not succeed after N retries then all parameter values will be
reverted to their state prior to the execution of the fit.

Parameters
* update (bool)— Update the model dictionary for all sources with free parameters.
* tol (float) - Set the optimizer tolerance.
* verbosity (int) — Set the optimizer output level.
* optimizer (str)— Set the likelihood optimizer (e.g. MINUIT or NEWMINUIT).
* retries (int)— Set the number of times to rerun the fit when the fit quality is < 3.

* min_fit_quality (int)— Set the minimum fit quality. If the fit quality is smaller than
this value then all model parameters will be restored to their values prior to the fit.

* reoptimize (bool) — Refit background sources when updating source properties (TS
and likelihood profiles).

Returns fit — Dictionary containing diagnostic information from the fit (fit quality, parameter co-
variances, etc.).

Return type dict

ROI Optimization

The opt imize method performs an automatic optimization of the ROI by fitting all sources with an iterative strategy.

1.3. Documentation Contents 29

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Fermipy Documentation, Release 0.19.0+dirty

>>> o = gta.optimize ()

It is generally good practice to run this method once at the start of your analysis to ensure that all parameters are close

to their global likelihood maxima.

Table 21: optimization Output Dictionary

Key Type Description

loglikglfloat Post-optimization log-likelihood value.

loglikgOfloat Pre-optimization log-likelihood value.

config | dict Copy of input configuration to this method.

dloglikefloat Improvement in log-likehood value.
Reference/API

GTAnalysis.optimize (**kwargs)
Iteratively optimize the ROI model. The optimization is performed in three sequential steps:

* Free the normalization of the N largest components (as determined from NPred) that contain a fraction
npred_frac of the total predicted counts in the model and perform a simultaneous fit of the normaliza-

tion parameters of these components.

¢ Individually fit the normalizations of all sources that were not included in the first step in order of their

npred values. Skip any sources that have NPred < npred_threshold.

¢ Individually fit the shape and normalization parameters of all sources with TS > shape_ts_threshold

where TS is determined from the first two steps of the ROI optimization.

To ensure that the model is fully optimized this method can be run multiple times.

Parameters

npred_frac (float) — Threshold on the fractional number of counts in the N largest
components in the ROI. This parameter determines the set of sources that are fit in the first
optimization step.

npred_threshold (f1oat)— Threshold on the minimum number of counts of individ-
ual sources. This parameter determines the sources that are fit in the second optimization
step.

shape_ts_threshold (float) — Threshold on source TS used for determining the
sources that will be fit in the third optimization step.

max_free_sources (int) — Maximum number of sources that will be fit simultane-
ously in the first optimization step.

skip (11ist)—List of str source names to skip while optimizing.

optimizer (dict)— Dictionary that overrides the default optimizer settings.

1.3.6 Customizing the Model

The ROIModel class is responsible for managing the source and diffuse components in the ROI. Configuration of the

model is controlled with the model block of YAML configuration file.

30

Chapter 1. Introduction

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functi